
University of Stuttgart

Institute for Parallel and Distributed High Performance Systems

Breitwiesenstr. 20{22

7000 Stuttgart 80

Fed. Rep. of Germany

Andreas Zell

Niels Mache, Ralf H�ubner

G�unter Mamier, Michael Vogt

Kai-Uwe Herrmann, Michael Schmalzl

Tilman Sommer, Artemis Hatzigeorgiou

Sven D�oring, Dietmar Posselt

external contributions by

Martin Reczko, Martin Riedmiller

SNNS

Stuttgart Neural Network Simulator

User Manual, Version 3.0

Report No. 3/93

All Rights reserved

Contents

1 Introduction to SNNS 1

2 Licensing, Copying and Acknowledgements 5

2.1 SNNS License : 6

2.2 How to obtain SNNS : 7

2.3 Installation : 8

2.4 Acknowledgements : 9

2.5 New Features of Release 3.0 : 11

3 Neural Network Terminology 13

3.1 Building Blocks of Neural Nets : 13

3.1.1 Units : 14

3.1.2 Connections (Links) : 18

3.1.3 Sites : 19

3.2 Update-Modes : 19

3.3 Learning in Neural Nets : 20

3.4 An Example of a simple Network : 22

4 Using the Graphical User Interface 23

4.1 XGUI Files : 23

4.2 Windows of XGUI : 24

4.2.1 Con�rmer : 26

4.2.2 Manager Panel : 27

4.2.3 Info Panel : 28

4.2.4 2D Displays : 31

4.2.5 Setup Panel : 32

4.2.6 Unit Function Displays : 34

4.2.7 File Browser : 35

4.2.7.1 Loading and Saving Networks : : : : : : : : : : : : : : : : 36

4.2.7.2 Loading and Saving Patterns : : : : : : : : : : : : : : : : : 36

4.2.7.3 Loading and Saving Con�gurations : : : : : : : : : : : : : 37

i

ii CONTENTS

4.2.7.4 Saving a Result �le : 37

4.2.7.5 De�ning the Log File : 37

4.2.8 Help Windows : 38

4.2.9 Print Panel : 39

4.2.10 Remote Panel : 40

4.2.11 Weight Display : 44

4.2.12 Graph Window : 45

4.3 Parameters of the Learning Functions : 46

4.4 Creating and Editing Unit Prototypes and Sites : : : : : : : : : : : : : : : : 51

5 Graphical Network Editor 53

5.1 Editor Modes : 54

5.2 Selection : 54

5.2.1 Selection of Units : 54

5.2.2 Selection of Links : 55

5.3 Use of the Mouse : 55

5.4 Short Command Reference : 56

5.5 Editor Commands : 60

5.6 Example Dialogue : 67

6 Network Creation Tools 69

6.1 BigNet for Feed-Forward Networks : 69

6.1.1 Terminology of the Tool BigNet : 69

6.1.2 Buttons of BigNet : 71

6.1.3 Plane Editor : 73

6.1.4 Link Editor : 73

6.1.5 Create Net : 76

6.2 BigNet for Time-Delay Networks : 77

6.2.1 Terminology of Time-Delay BigNet : : : : : : : : : : : : : : : : : : : 78

6.2.2 Plane Editor : 78

6.2.3 Link Editor : 79

6.3 BigNet for ART-Networks : 80

7 A Network Analyzing Tool 82

7.1 Inversion Algorithm : 82

7.2 Inversion Display : 83

7.3 Example Session : 85

CONTENTS iii

8 Neural Network Models and Functions 87

8.1 Backpropagation Networks : 87

8.1.1 Vanilla Backpropagation : 87

8.1.2 Enhanced Backpropagation : 87

8.1.3 Batch Backpropagation : 88

8.2 Quickprop : 88

8.3 RPROP : 89

8.4 Backpercolation : 90

8.5 Counterpropagation : 91

8.5.1 Fundamentals : 91

8.5.2 Counterpropagation Implementation in SNNS : : : : : : : : : : : : : 92

8.6 Dynamic Learning Vector Quantization (DLVQ) : : : : : : : : : : : : : : : 92

8.6.1 DLVQ Fundamentals : 92

8.6.2 DLVQ in SNNS : 93

8.6.3 Remarks : 94

8.7 Backpropagation Through Time (BPTT) : : : : : : : : : : : : : : : : : : : 95

8.8 The Cascade Correlation Algorithms : 97

8.8.1 Cascade-Correlation (CC) : 97

8.8.1.1 The Algorithm : 97

8.8.1.2 Mathematical Background : : : : : : : : : : : : : : : : : : 98

8.8.2 Recurrent Cascade-Correlation (RCC) : : : : : : : : : : : : : : : : : 100

8.8.2.1 The Algorithm : 100

8.8.2.2 Mathematical Background : : : : : : : : : : : : : : : : : : 100

8.8.3 Using the Cascade Algorithms in SNNS : : : : : : : : : : : : : : : : 101

8.9 Time Delay Networks (TDNNs) : 103

8.9.1 TDNN Fundamentals : 103

8.9.2 TDNN Implementation in SNNS : 105

8.9.3 Building and Using a Time Delay Network : : : : : : : : : : : : : : 106

8.10 Radial Basis Functions (RBFs) : 106

8.10.1 RBF Fundamentals : 107

8.10.2 RBF Implemetation in SNNS : 110

8.10.2.1 Activation Functions : 110

8.10.2.2 Initialization Functions : 111

8.10.2.3 Learning Functions : 115

8.10.3 Building a Radial Basis Function Application : : : : : : : : : : : : : 117

8.11 ART Models in SNNS : 119

8.11.1 ART1 : 119

iv CONTENTS

8.11.1.1 Structure of an ART1 Network : : : : : : : : : : : : : : : : 119

8.11.1.2 Using ART1 Networks in SNNS : : : : : : : : : : : : : : : 120

8.11.2 ART2 : 123

8.11.2.1 Structure of an ART2 Network : : : : : : : : : : : : : : : : 123

8.11.2.2 Using ART2 Networks in SNNS : : : : : : : : : : : : : : : 123

8.11.3 ARTMAP : 126

8.11.3.1 Structure of an ARTMAP Network : : : : : : : : : : : : : 126

8.11.3.2 Using ARTMAP Networks in SNNS : : : : : : : : : : : : : 127

8.11.4 Topology of ART Networks in SNNS : : : : : : : : : : : : : : : : : : 128

9 3D-Visualization of Neural Networks 132

9.1 Overview of the 3D Network Visualization : : : : : : : : : : : : : : : : : : : 132

9.2 Use of the 3D-Interface : 133

9.2.1 Structure of the 3D-Interface : 133

9.2.2 Calling and Leaving the 3D Interface : : : : : : : : : : : : : : : : : : 134

9.2.3 Creating a 3D-Network : 134

9.2.3.1 Concepts : 134

9.2.3.2 Assigning a new z-Coordinate : : : : : : : : : : : : : : : : 136

9.2.3.3 Moving a z-Plane : 136

9.2.3.4 Displaying the z-Coordinates : : : : : : : : : : : : : : : : : 136

9.2.3.5 Example Dialogue to Create a 3D-Network : : : : : : : : : 136

9.2.4 3D-Control Panel : 140

9.2.4.1 Transformation Panels : 141

9.2.4.2 Setup Panel : 141

9.2.4.3 Model Panel : 142

9.2.4.4 Project Panel : 142

9.2.4.5 Light Panel : 142

9.2.4.6 Unit Panel : 143

9.2.4.7 Links Panel : 144

9.2.4.8 Reset Button : 145

9.2.4.9 Freeze Button : 145

9.2.5 3D-Display Window : 145

10 Running SNNS as Batch Job 146

10.1 The Snnsbat Environment : 146

10.2 Using Snnsbat : 146

10.3 Calling Snnsbat : 151

CONTENTS v

11 Design of the Simulator Kernel 152

11.1 Network Model of the Simulator : 152

11.2 Design Factors : 152

11.3 Layer Model of the Simulator Kernel : 154

12 Internal Data Structures 155

12.1 Unit Array : 155

12.2 Sites : 157

12.3 Links : 157

12.4 Network Memory Management : 158

12.4.1 Link/Site Arrays : 159

12.4.2 Symbol Table : 159

12.5 Unit Flags : 159

12.6 Function Table : 162

13 Kernel Function Interface 163

13.1 Overview : 163

13.2 Unit Functions : 163

13.2.1 Unit Enquiry and Manipulation Functions : : : : : : : : : : : : : : : 165

13.2.2 Unit De�nition Functions : 167

13.3 Site Functions : 169

13.3.1 Functions for the De�nition of Sites : : : : : : : : : : : : : : : : : : 169

13.3.2 Functions for the Manipulation of Sites : : : : : : : : : : : : : : : : 170

13.4 Link Functions : 171

13.5 Functions for the Manipulation of Prototypes : : : : : : : : : : : : : : : : : 172

13.6 Functions to Read the Function Table : 174

13.7 Network Initialization Functions : 175

13.8 Functions for Activation Propagation in the Network : : : : : : : : : : : : : 175

13.9 Learning Functions : 176

13.10Functions for the Manipulation of Patterns : : : : : : : : : : : : : : : : : : 177

13.11File I/O Functions : 178

13.12Functions to Search the Symbol Table : 178

13.13Miscelaneous other Interface Functions : 178

13.14Memory Management Functions : 179

13.15ART Interface Functions : 180

13.16Error Messages of the Simulator Kernel : 180

14 Transfer Functions 183

14.1 Prede�ned Transfer Functions : 183

14.2 User De�ned Transfer Functions : 185

vi CONTENTS

15 Simulator Kernel Implementation 187

16 Implementation of the User Interface 190

16.1 Administration of the Windows : 192

16.2 Main Program : 195

16.3 Manager Panel : 195

16.4 Layer Panel : 196

16.5 Graphic Windows : 196

16.5.1 Event Handler for Mouse and Window Events : : : : : : : : : : : : : 197

16.5.2 Event Handler for Keyboard Events : : : : : : : : : : : : : : : : : : 198

16.5.3 Editor Actions : 198

16.5.4 Setup Panel : 199

16.5.5 Freezing Displays : 200

16.6 List Module : 200

16.7 File Panel : 201

16.8 Help Window : 201

16.9 Con�rmer : 201

16.10Graphic : 202

16.11Selection Mechanism : 202

16.12Interface to the Simulator Kernel : 203

17 3D-Display Implementation 205

17.1 Contents of the Modules : 205

17.2 Global Data Types and Variables : 206

17.3 Drawing the Network in 3D : 209

17.4 Low Level Drawing Routines : 213

17.5 Matrix Calculations : 213

17.6 The 3D Display Window : 214

17.7 Panels : 214

A Kernel File Interface 216

A.1 The ASCII Network File Format : 216

A.2 Form of the Network File Entries : 217

A.3 Grammar of the Network Files : 218

A.3.1 Conventions : 218

A.3.1.1 Lexical Elements of the Grammar : : : : : : : : : : : : : : 218

A.3.1.2 De�nition of the Grammar : : : : : : : : : : : : : : : : : : 218

A.3.2 Terminal Symbols: 219

A.3.3 Grammar: 220

B Example Network Files 223

B.0.4 Example 1: 223

B.0.5 Example 2: 226

C Example Snnsbat Protocol File 228

Chapter 1

Introduction to SNNS

SNNS (Stuttgart Neural Network Simulator) is a simulator for neural networks developed

at the Institute for Parallel and Distributed High Performance Systems (Institut f�ur Paral-

lele und Verteilte H�ochstleistungsrechner, IPVR) at the Universit�at Stuttgart since 1989.

The goal of the project is to create an e�cient and exible simulation environment for

research on and application of neural nets.

The SNNS simulator consists of two main components that are depicted in �gure 1.1:

Simulator kernel and graphical user interface. The simulator kernel operates on the inter-

nal network data structures of the neural nets and performs all operations on them. The

graphical user interface XGUI

1

, built on top of the kernel, gives a graphical representation

of the neural networks and controls the kernel during the simulation run. In addition,

the user interface can be used to directly create, manipulate and visualize neural nets in

various ways.

During the development of the user interface, high consideration was given to its e�ective

handling. Thus complex networks can be created quickly and easily. Nevertheless, XGUI

should also be well suited for unexperienced users, who want to learn about connectionist

models with the help of the simulator. An online help system, partly context-sensitive, is

integrated, which can o�er assistance with problems.

Another important point was to enable the user to select only those aspects of the vi-

sual representation of the net in which he is interested. This includes depicting several

aspects and parts of the network with multiple windows as well as suppressing unwanted

information with a layer technique.

SNNS is implemented completely in ANSI-C. The simulator kernel has already been tested

on numerous machines and operating systems (see also table 1.1). XGUI is based upon

X11 Release 5 from MIT and the Athena Toolkit, and was tested under the twm window

manager.

This document is structured as follows:

This chapter 1 gives a brief introduction and overview of SNNS.

1

X Graphical User Interface

1

2 CHAPTER 1. INTRODUCTION TO SNNS

SNNS

simulator

kernel

written in C

Nessus

network

compiler

X-Windows

graphical

user interface

XGUI

program in high level

network description

language Nessus

ASCII network

description file

(intermediate

form)

graphical network

representation,

network editor,

simulation control

direct

manipulation

Unix memory management

SNNS memory management

kernel-XGUI

function interface

kernel-compiler

file interface

network modification functions

activation

functions

learning

procedures

internal

network

representation

AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA
AAAAAAAAAAAAA

AAAAAA
AAAAAA
AAAAAA

user defined

learning

procedures

user defined

activation

functions

AAAAA
AAAAA
AAAAA
AAAAA

AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA
AAAAAA

AAAAA
AAAAA

Figure 1.1: SNNS components: simulator kernel, graphical user interface, and network

compiler

machine type operating system

SUN SparcSt. SLC, ELC,IPC SunOS 4.1.2

SUN SparcSt. 2 GX, GS SunOS 4.1.2

SUN SparcSt. 10 SunOS 4.1.2

DECstation 2100, 3100 Ultrix V4.2

DECstation 5000 Ultrix V4.2

IBM-PC 80386, 80486 Interactive Unix

IBM-PC 80486 Linux

IBM RS 6000/320, 320H AIX V3.1, AIX V3.2

IBM RS 6000/530H AIX V3.1, AIX V3.2

HP 9000/720, 730 HP-UX 8.07

Table 1.1: Machines and operating systems on which SNNS has been tested (as of March

1993)

3

Chapter 2 gives the details about how to obtain SNNS and under what conditions. It

includes licensing, copying and exclusion of warranty. It then discusses how to install

SNNS and gives acknowledgements of its numerous authors.

Chapter 3 introduces the components of neural nets and the terminology used in the

description of the simulator. Therefore, this chapter may also be of interest to people

already familiar with neural nets.

Chapter 4 describes how to operate the two-dimensional graphical user interface. After a

short overview of all commands a more detailed description of these commands with an

example dialog is given.

Chapter 5 describes the integrated graphical editor of the 2D user interface. These editor

commands allow the interactive construction of networks with arbitrary topologies.

Chapter 6 is about a tool to facilitate the generation of large, regular networks from the

graphical user interface.

Chapter 7 describes the network analyzing facility, built into SNNS. The analyzing method

is called inversion.

Chapter 8 describes the connectionist models that are already implemented in SNNS, with

a strong emphasis on the less familiar network models.

Chapter 9 introduces a new visualization component for three-dimensional visualization

of the topology and the activity of neural networks with wireframe or solid models.

Chapter 10 introduces the batch capabilities of SNNS. They can be accessed via an addi-

tional interface to the kernel, that allows for easy background execution.

Chapter 11 describes the structure of the SNNS simulator kernel.

Chapter 12 discusses the internal data structures used for describing the nets.

Chapter 13 describes in detail the interface between the kernel and the graphical user

interface. This function interface is important, since the kernel can be included in user

written C programs with it.

Chapter 14 details the activation functions and output function which are already built

in.

Chapter 15 gives implementation details of the simulator kernel.

Chapter 16 deals with the concepts used in the implementation of SNNS-XGUI. It also

explains the source code, which is especially interesting for further projects.

Chapter 17 gives implementation details of the 3D network visualization component.

The description of the Nessus programming language and compiler is not included in this

document but in a separate manual. This manual is currently only available in German.

It consists of the description of the language elements, which are explained with examples,

and information regarding the implementation of the compiler.

In appendix A the format of the �le interface to the kernel is described, in which the nets

are read in and written out by the kernel. Files in this format may also be generated by

4 CHAPTER 1. INTRODUCTION TO SNNS

any other program, the Nessus network compiler or even an editor.

In appendix B and C examples for network and batch con�guration �les are given.

Chapter 2

Licensing, Copying and

Acknowledgements

SNNS is
c
(Copyright) 1990-93 SNNS Group, Institute for Parallel and Distributed High

Performance Systems (IPVR),University of Stuttgart, Breitwiesenstr. 20-22, 7000 Stuttgart

80

1

, Fed. Rep. of Germany.

SNNS is distributed by the University of Stuttgart as `Free Software' in a licensing agree-

ment similar in some aspects to the GNU General Public License. There are a number of

important di�erences, however, regarding modi�cations and distribution of SNNS to third

parties. Note also that SNNS is not part of the GNU software nor is any of its authors

connected with the Free Software Foundation. We only share some common beliefs about

software distribution. Note further that SNNS is NOT PUBLIC DOMAIN.

The SNNS License is designed to make sure that you have the freedom to give away

verbatim copies of SNNS, that you receive source code or can get it if you want it and

that you can change the software for your personal use; and that you know you can do

these things.

We protect your and our rights with two steps: (1) copyright the software, and (2) o�er

you this license which gives you legal permission to copy and distribute the unmodi�ed

software or modify it for your own purpose.

In contrast to the GNU license we do not allow modi�ed copies of our software to be

distributed. You may, however, distribute your modi�cations as separate �les (e. g. patch

�les) along with our unmodi�ed SNNS software. We encourage users to send changes and

improvements which would bene�t many other users to us so that all users may receive

these improvements in a later version. The restriction not to distribute modi�ed copies is

also useful to prevent bug reports from someone else's modi�cations.

Also, for our protection, we want to make certain that everyone understands that there is

NO WARRANTY OF ANY KIND for the SNNS software.

1

After July 1st, the zip code will change to 70565 Stuttgart

5

6 CHAPTER 2. LICENSING, COPYING AND ACKNOWLEDGEMENTS

2.1 SNNS License

1. This License Agreement applies to the SNNS program and all accompanying pro-

grams and �les that are distributed with a notice placed by the copyright holder

saying it may be distributed under the terms of the SNNS License. \SNNS", below,

refers to any such program or work, and a \work based on SNNS" means either

SNNS or any work containing SNNS or a portion of it, either verbatim or with

modi�cations. Each licensee is addressed as \you".

2. You may copy and distribute verbatim copies of SNNS's source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on

each copy an appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any warranty; and

give any other recipients of SNNS a copy of this license along with SNNS.

3. You may modify your copy or copies of SNNS or any portion of it only for your own

use. You may not distribute modi�ed copies of SNNS. You may, however, distribute

your modi�cations as separate �les (e. g. patch �les) along with the unmodi�ed SNNS

software. We also encourage users to send changes and improvements which would

bene�t many other users to us so that all users may receive these improvements in

a later version. The restriction not to distribute modi�ed copies is also useful to

prevent bug reports from someone else's modi�cations.

4. If you distribute copies of SNNS you may not charge anything except the cost for

the media and a fair estimate of the costs of computer time or network time directly

attributable to the copying.

5. You may not copy, modify, sublicense, distribute or transfer SNNS except as ex-

pressly provided under this License. Any attempt otherwise to copy, modify, sub-

license, distribute or transfer SNNS is void, and will automatically terminate your

rights to use SNNS under this License. However, parties who have received copies,

or rights to use copies, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

6. By copying, distributing or modifying SNNS (or any work based on SNNS) you

indicate your acceptance of this license to do so, and all its terms and conditions.

7. Each time you redistribute SNNS (or any work based on SNNS), the recipient auto-

matically receives a license from the original licensor to copy, distribute or modify

SNNS subject to these terms and conditions. You may not impose any further

restrictions on the recipients' exercise of the rights granted herein.

8. Incorporation of SNNS or parts of it in commercial programs requires a special

agreement between the copyright holder and the Licensee in writing and ususally

involves the payment of license fees. If you want to incorporate SNNS or parts of it

in commercial programs write to the author about further details.

9. Because SNNS is licensed free of charge, there is no warranty for SNNS, to the

extent permitted by applicable law. The copyright holders and/or other parties

provide SNNS \as is" without warranty of any kind, either expressed or implied,

2.2. HOW TO OBTAIN SNNS 7

including, but not limited to, the implied warranties of merchantability and �tness

for a particular purpose. The entire risk as to the quality and performance of SNNS

is with you. Should the program prove defective, you assume the cost of all necessary

servicing, repair or correction.

10. In no event will any copyright holder, or any other party who may redistribute SNNS

as permitted above, be liable to you for damages, including any general, special,

incidental or consequential damages arising out of the use or inability to use SNNS

(including but not limited to loss of data or data being rendered inaccurate or losses

sustained by you or third parties or a failure of SNNS to operate with any other

programs), even if such holder or other party has been advised of the possibility of

such damages.

2.2 How to obtain SNNS

The SNNS simulator can be obtained via anonymous ftp from host

ftp.informatik.uni-stuttgart.de (129.69.211.2)

in the subdirectory

/pub/SNNS

as �le

SNNSv3.0.tar.Z

or in several parts as �les

SNNSv3.0.tar.Z.aa, SNNSv3.0.tar.Z.ab, ...

These split �les are each less than 1 MB and can be joined with the Unix `cat' command

into one �le SNNSv3.0.tar.Z. Be sure to set the ftp mode to binary before transmission

of the �les. Also watch out for possible higher version numbers, patches or Readme �les

in the above directory /pub/SNNS. After successful transmission of the �le move it to the

directory where you want to install SNNS, uncompress the �le with the Unix command

uncompress SNNSv3.0.tar.Z

and then use the command

tar -xvf SNNSv3.0.tar

This will extract SNNS in the current directory. The SNNS distribution includes full

source code, installation procedures for supported machine architectures and some simple

examples of trained networks. The full English documentation as L

a

T

E

X source code with

PostScript images included and a PostScript version of the documentation is also available

in the SNNS directory.

8 CHAPTER 2. LICENSING, COPYING AND ACKNOWLEDGEMENTS

2.3 Installation

Note that SNNS has not been tested extensively in di�erent computer environments and

is a research tool with frequent substantial changes. It should be obvious that we don't

guarantee anything. We are also not sta�ed to answer problems with SNNS or to �x bugs

quickly.

Starting with release 3.0, SNNS needs an ANSI-C compiler to run. The Kernighan &

Ritchie standard is no longer supported.

SNNS currently runs on colour or black and white Sun-3, Sun-4 (SPARC) systems under

SunOS 4.1.1 with X-Windows X11R4 and X11R5 (Athena widget set, twm, MIT fonts

etc.) and under Sun OpenWindows 3.0. It also runs on DecStations with MIPS R3000

Processor with X-Windows X11R4 and X11R5. It has not been tested on out of the box

DecStations with DecWindows. It has been tested on the IBM RS 6000 with AIX version

3.1 and on HP 9000/700 machines with HP-UX 8.07. In general, the SNNS kernel will run

on almost any Unix system, while the graphical user interface might give problems with

systems which are not fully X11R4 (or X11R5) compatible.

To build SNNS in the directory in which you have moved it you �rst have to generate

the correct make�les for your machine architecture and window system used. To do this,

simply call the shell script

configure

This prompts you for information about the machine architecture and the window system

and builds all necessary make�les with this information. It uses templates found in the

directory configuration for this task. At the end of this script, you will be told about

the next step to build the simulator.

The next step to build the simulator is usually to build the kernel and the graphical user

interface with the command

build sim

or with the two commands

build kernel

build xgui

This script descends into the appropriate subdirectories and calls the make�les in these

subdirectoires to compile all necessary source �les and link the object �les into one exe-

cutable �le. The executable is located in

<SNNS-dir.>/xgui/bin/<architecture>/xgui

where <SNNS-dir.> is the current SNNS directory and <architecture> is the machine

architecure, e.g. sun3, sparc, dec, rs6000, hp or others.

We usually build a symbolic link named snns to point to this executable if we often work

on the same machine architecture.

ln -s xgui/bin/<architecture>/xgui snns

2.4. ACKNOWLEDGEMENTS 9

This link may also be placed in the user home directory (with the proper path pre�x to

SNNS) or in a directory of binaries in the local users' search path.

The simulator is then called simply with

snns

For further details about calling the simulator and working with the graphical user interface

see chapter 4.

2.4 Acknowledgements

SNNS is a joint e�ort of a number of people, most of them computer science students

at the University of Stuttgart, Institute for Parallel and Distributed High Performance

Systems (IPVR), Stuttgart, Germany.

The project to develop an e�cient and portable neural network simulator which later

became SNNS was lead since 1989 by Dr. Andreas Zell, who designed the predecessor to

the SNNS simulator and the SNNS simulator itself and acted as advisor for more than a

dozen independent research and Master's thesis projects that made up the SNNS simulator

and some of its applications. Over time the SNNS source grew to a total size of now

3.3MB in 110.000 lines of code. All the research has been done under the supervision of

Prof. Dr. Andreas Reuter and Prof. Dr. Paul Levi. We are all grateful for their continuing

support and for providing us with the necessary computer and network equipment.

The following persons were directly involved in the SNNS project:

Andreas Zell Design of the SNNS simulator, SNNS project team leader

[ZMS90], [ZMSK91b] [ZMSK91c], [ZMSK91a]

Niels Mache SNNS simulator kernel (really the heart of SNNS) [Mac90],

parallel SNNS kernel on MasPar MP-1216.

Tilman Sommer original version of the SNNS simulator graphical user inter-

face XGUI with integrated network editor [Som89], PostScript

printing.

Ralf H�ubner SNNS simulator 3D graphical user interface [H�ub92], user in-

terface development (version 2.0 to 3.0).

Thomas Korb SNNS network compiler and network description language Nes-

sus [Kor89]

Michael Vogt Implementation of Radial Basis Functions and application: use

of RBF's in SNNS [Vog92]. Together with G�unter Mamier

implementation of Time Delay Networks.

G�unter Mamier SNNS visualisation and analyzing tools [Mam92]. Implemen-

tation of the batch execution cabability. Compilation and con-

tinous update of the user manual.

10 CHAPTER 2. LICENSING, COPYING AND ACKNOWLEDGEMENTS

Michael Schmalzl SNNS network creation tool Bignet, implementation of Cas-

cade Correlation, and printed character recognition with SNNS

[Sch91a]

Kai-Uwe Herrmann Implementation of the ART models ART1, ART2, ARTMAP

and modi�cation of the BigNet tool [Her92].

Artemis Hatzigeorgiou Video documentation about the SNNS project, SNNS simula-

tor learning procedure Backpercolation 1.

2

Andreas Veigel Application: handwritten character recognition with neural

networks [Vei91]

Peter Zimmerer Application: Position- and rotation-invariant recognition of

at machine parts with neural networks [Zim91], [ZZ91]

Dieter Schmidt Application: Classi�cation of endogenic and exogenic compo-

nents of EEG signals with neural networks [Sch91b]

J�urgen Sienel Application: Noise reduction in speech recognition systems

with neural networks [Sie91]

G�unther Kubiak Application: Prediction of stock values with neural networks

[Kub91]

Martin Riedmiller Implementation of RPROP in SNNS

Martin Reczko Implementation of Backpropagation Through Time (BPTT),

Batch BPTT (BBPTT), and Quickprop Through Time (QPTT).

Sven D�oring ANSI-C translation of SNNS.

Dietmar Posselt ANSI-C translation of SNNS.

G�unter Mamier and Andreas Zell translated the German original of this documentation

into English.

The SNNS simulator is a successor to an earlier neural network simulator called NetSim

[ZKSB89], [KZ89] by A. Zell, T. Sommer, T. Korb and A. Bayer, which was itself inuenced

by the popular Rochester Connectionist Simulator RCS [GLML89] with the old SunView

Interface. This heritage can still be detected in the user interface.

In September 1991 the Stuttgart Neural Network Simulator SNNS was awarded the

\Deutscher Hochschul-Software-Preis 1991" (German Federal Research Software Prize)

by the German Federal Minister for Science and Education, Prof. Dr. Ortleb.

2

Backpercolation 1 was developed by JURIK RESEARCH & CONSULTING, PO 2379, Aptos, CA

95001 USA. Any and all SALES of products (commercial, industrial, or otherwise) that utilize the Back-

percolation 1 process or its derivatives require a license from JURIK RESEARCH & CONSULTING. Write

for details.

2.5. NEW FEATURES OF RELEASE 3.0 11

2.5 New Features of Release 3.0

Users already familiar with SNNS and its usage may be interested in the di�erences be-

tween the versions 2.1 and 3.0. New users of SNNS may skip this section and proceed

with the next chapter.

1. Complete translation from K&R-C to ANSI-C. An ANSI-C compiler is now required

to compile SNNS

3

.

2. Implementation of ART1, ART2, and ARTMAP network models.

3. Implementation of Time Delay Networks (TDNNs).

4. Implementation of the RPROP learning algorithm.

5. Implementation of the learning algorithms Backpropagation Through Time (BPTT),

Batch Backpropagation Through Time (BBPTT), and Quickprop Through Time

(QPTT) for recurrent networks.

6. Implementation of cascade correlation and recurrent cascade correlation.

7. The bignet panel was split up. Now there is one panel for each special network class.

8. Change in the kernel-xgui interface: the function krui delete Unit was replaced

by krui delete UnitList.

9. The kernel now handles 10 learning parameters instead of 5.

10. The tool snnsbat now handles multiple training / callback runs instead of just one.

11. This user manual was expanded and got an index.

12. In the 3D display the units are now shaded even when the activation is color coded.

13. The extra stop button in the remote panel was removed.

14. Bugs removed:

� The wrong de�nition 'extern int fprintf()' in the �le ui funcdispl.h was removed.

� The name of the learning function in the remote panel is now erased when a

new network is loaded.

� All patterns become invalid when the network structure is changed after pat-

terns have been loaded. Old patterns caused segmentation faults so far.

� The button DEF in the info panel was not working propperly. This is �xed

now.

� An open weight-display caused segmentation faults after changes to the net-

work. This should be resolved now.

� The �le interface didn't like the description of sites in the 2.1 release. We

convinced it to behave as expected.

3

This was a major change of SNNS, especially in the graphical user interface. It uncovered a number

of bugs. We hope, that it did not introduce too many new ones.

12 CHAPTER 2. LICENSING, COPYING AND ACKNOWLEDGEMENTS

� When links were set to xx.yyyy in the info panel, they were reported as being

xx.yyyy8. The 8 is removed now (the link actually was xx.yyyy).

� Network �le consistency test was improved.

� Unit default types in the network �le are now treated correctly.

� An allocation of 0 units is now possible. (Produced a segmentation fault under

AIX up to now).

� Some errors in the user manual have been corrected.

The translation of SNNS from K&R C to ANSI-C uncovered several unknown bugs.

All those have been removed now. We hope that the translation improves the overall

robustness of SNNS and that not too many new bugs have been created.

Chapter 3

Neural Network Terminology

Connectionism is a current focus of research in a number of disciplines, among them

arti�cial intelligence (or more general computer science), physics, psychology, linguistics,

biology and medicine. Connectionism represents a special kind of information processing:

Connectionist systems consist of many primitive cells (units) which are working in parallel

and are connected via directed links (links, connections). The main processing principle

of these cells is the distribution of activation patterns across the links similar to the basic

mechanism of the human brain, where information processing is based on the transfer of

activation from one group of neurons to others through synapses. This kind of processing

is also known as parallel distributed processing (PDP).

The high performance of the human brain in highly complex cognitive tasks like visual

and auditory pattern recognition was always a great motivation for modelling the brain.

For this historic motivation connectionist models are also called neural nets . However,

most current neural network architectures do not try to closely imitate their biological

model but rather can be regarded simply as a class of parallel algorithms.

In these models, knowledge is usually distributed throughout the net and is stored in

the structure of the topology and the weights of the links. The networks are organized

by (automated) training methods, which greatly simplify the development of speci�c ap-

plications. Classical logic in ordinary AI systems is replaced by vague conclusions and

associative recall (exact match vs. best match). This is a big advantage in all situations

where no clear set of logical rules can be given. The inherent fault tolerance of connection-

ist models is another advantage. Furthermore, neural nets can be made tolerant against

noise in the input: with increased noise, the quality of the output usually degrades only

slowly (graceful performance degradation).

3.1 Building Blocks of Neural Nets

The following paragraph describes a generic model for those neural nets that can be

generated by the SNNS simulator. The basic principles and the terminology used in

dealing with the graphical interface are also briey introduced. A more general and more

detailed introduction to connectionism can, e.g., be found in [RM86].

13

14 CHAPTER 3. NEURAL NETWORK TERMINOLOGY

A network consists of units

1

and directed, weighted links (connections) between them. In

analogy to activation passing in biological neurons, each unit receives a net input that is

computed from the weighted outputs of prior units with connections leading to this unit.

Picture 3.1 shows a small network.

-5.24
11.71

-5.24

6.97 6.97

output unit

hidden unit

input units

Figure 3.1: A small network with three layers of units

The actual information processing within the units is modelled in the SNNS simulator with

the activation function and the output function. The activation function �rst computes

the net input of the unit from the weighted output values of prior units. It then computes

the new activation from this net input (and possibly its previous activation). The output

function takes this result to generate the output of the unit.

2

These functions can be

arbitrary C functions linked to the simulator kernel and may be di�erent for each unit.

Our simulator uses a discrete clock. Time is not modelled explicitly (i.e. there is no

propagation delay or explicit modelling of activation functions varying over time). Rather,

the net executes in update-steps , where a(t + 1) is the activation of a unit one step after

a(t).

The SNNS simulator, just like the Rochester Connectionist Simulator (RCS, [God87]),

o�ers the use of sites as additional network element. Sites are a simple model of the

dendrites of a neuron which allow a grouping and di�erent treatment of the input signals

of a cell. Di�erent sites can have di�erent site functions. This selective treatment of

incomming information allows more powerful connectionist models. Picture 3.2 shows one

unit with sites and one without.

In the following all the various network elements are described in detail.

3.1.1 Units

Depending on their function in the net, one can distinguish three types of units: The

units whose activations are the problem input for the net are called input units , the units

whose output represent the output of the net output units. The remaining units are called

hidden units , because they are not visible from the outside (see e.g. �gure 3.1).

1

In the following the more common name "units" is used instead of "cells".

2

The term transfer function often denotes the combination of activation and output function. To make

matters worse, sometimes the term activation function is also used to comprise activation and output

function.

3.1. BUILDING BLOCKS OF NEURAL NETS 15

output

activation

to other units

unit with sites

output function

activation function

site value

site function

output

activation

to other units

unit without sites

output function

activation function

Figure 3.2: One unit with sites and one without

In most neural network models the type correlates with the topological position of the

unit in the net: If a unit does not have input connections but only output connections,

then it is an input unit. If it lacks output connections but has input units, it is an output

unit, if it has both types of connections it is a hidden unit.

It can, however, be the case, that the output of a topologically internal unit is regarded

as part of the output of the network. The IO-type of a unit used in the SNNS simulator

has to be understood in this manner. That is, units can receive input or generate output

even if they are not at the fringe of the network.

Below, all attributes of a unit are listed:

� no: For proper identi�cation, every unit has a number

3

attached to it. This number

de�nes the order in which the units are stored in the simulator kernel.

� name: The name can be selected arbitrarily by the user. It must not, however,

contain blanks or special characters, and has to start with a letter. It is useful

to select a short name that describes the task of the unit, since the name can be

displayed with the network.

� io-type or io: The IO-type de�nes the function of the unit within the net. The

following alternatives are possible

{ input : input unit

{ output : output unit

{ dual : both input and output unit

{ hidden: internal, i.e. hidden unit

3

This number can change after saving, but remains unambiguous. See also chapter 4.2.7.1

16 CHAPTER 3. NEURAL NETWORK TERMINOLOGY

{ special: this type can be used in any way, depending upon the application. In

the standard version of the SNNS simulator, the weights to such units are not

adapted in the learning algorithm (see paragraph 3.3).

� activation: The activation value.

� initial activation or i act: This variable contains the initial activation value,

present after the inital loading of the net. This initial con�guration can be repro-

duced by resetting (reset) the net, e.g. to get a de�ned starting state of the net.

� output: the output value.

� bias: In contrast to other network simulators where the bias (threshold) of a unit

is simulated by a link weight from a special 'on'-unit, SNNS represents it as a unit

parameter. In the standard version of SNNS the bias determines where the activation

function has its steepest ascent. (see e.g. the activation function Act logistic).

Learning procedures like backpropagation change the bias of a unit like a weight

during training.

� activation function or actFunc: A new activation is computed from the output

of preceeding units, usually multiplied by the weights connecting these predecessor

units with the current unit, the old activation of the unit and its bias. When sites

are being used, the network input is computed from the site values. The general

formula is:

a

j

(t+ 1) = f

act

(net

j

(t); a

j

(t); �

j

)

where:

a

j

(t) activation of unit j in step t

net

j

(t) net input in unit j in step t

�

j

threshold (bias) of unit j

The SNNS default activation function Act logistic, for example, computes the net-

work input simply by summing over all weighted activations and then squashing the

result with the logistic function f

act

(x) = 1=(1 + e

�x

). The new activation at time

(t+ 1) lies in the range [0; 1]

4

. The variable �

j

is the threshold of the unit j.

The net input net

j

(t) is computed with

net

j

(t) =

X

i

w

ij

o

i

(t) if unit j has no sites

net

j

(t) =

X

k

s

jk

(t) if the unit j has sites, with site values

s

jk

(t) =

X

i

w

ij

o

i

(t)

This yields the well-known logistic activation function

a

j

(t + 1) =

1

1 + e

�

(

P

i

w

ij

o

i

(t)��

j)

4

Mathematically correct would be]0; 1[, but the values 0 and 1 are reached due to arithmetic inaccuracy.

3.1. BUILDING BLOCKS OF NEURAL NETS 17

where:

a

j

(t) activation of unit j in step t

net

j

(t) net input in unit j in step t

o

i

(t) output of unit i in step t

s

jk

(t) site value of site k on unit j in step t

j index for some unit in the net

i index of a predecessor of the unit j

k index of a site of unit j

w

ij

weight of the link from unit i to unit j

�

j

threshold (bias) of unit j

Activation functions in SNNS are relatively simple C functions which are linked to

the simulator kernel. The user may easily write his own activation functions in C and

compile and link them to the simulator kernel. How this can be done is described

later.

� output function or outFunc: The output function computes the output of every

unit from the current activation of this unit. The output function is in most cases

the identity function (SNNS: Out identity). This is the default in SNNS. The

output function creates the possibility to process the activation before an output

occurs.

o

j

(t) = f

out

(a

j

(t))

where:

a

j

(t) Activation of unit j in step t

o

j

(t) Output of unit j in step t

j Index for all units of the net

Another prede�ned SNNS-standard function, Out Clip01 clips the output to the

range of [0::1] and is de�ned as follows:

o

j

(t) =

8

>

<

>

:

0 if a

j

(t) < 0

1 if a

j

(t) > 1

a

j

(t) else

Output functions are even simpler C functions than activation functions and can be

user de�ned in a similar way.

� f-type: The user can assign so called f-types (functionality types, prototypes) to

a unit. The unusual name is for historic reasons. One may think of an f-type as

a pointer to some prototype unit where a number of parameters already has been

de�ned:

{ activation function and output function

{ whether sites are present and, if so, which ones

18 CHAPTER 3. NEURAL NETWORK TERMINOLOGY

These types can be de�ned independently and are used for grouping units into sets

of units with the same functionality. All changes in the de�nition of the f-type

consequently a�ect also all units of that type. Therefore a variety of changes becomes

possible with minimum e�ort.

� position: Every unit has a speci�c position (coordinates in space) assigned to it.

These positions consist of 3 integer coordinates in a 3D grid. For editing and 2D

visualization only the �rst two (x and y) coordinates are needed, for 3D visualization

of the networks the z coordinate is necessary.

� subnet no: Every unit is assigned to a subnet. With the use of this variable,

structured nets can be displayed more clearly than it would be possible in a 2D

presentation.

� layers: Units can be visualized in 2D in up to 8 layers

5

, that can be displayed

selectively. This technique is similar to a presentation with several transparencies,

where each transparency contains one aspect or part of the picture, and some or all

transparencies can be selected to be stacked on top of each other in a random order.

Only those units which are in layers (transparencies) that are 'on' are displayed.

This way only selected portions of the network can be shown. It is also possible to

assign one unit to multiple layers. Thereby it is feasible to assign any combination

of units to a layer that represents an aspect of the network.

� frozen: This attribute ag speci�es that activation and output are frozen. This

means that these values don't change during the simulation.

All 'important` unit parameters like activation, initial activation, output etc. and all func-

tion results are computed as oats with nine decimals accuracy.

3.1.2 Connections (Links)

The direction of a connection shows the direction of the transfer of activation. The unit

from which the connection starts is called source unit , or source for short, while the other is

called target unit , or target. Connections where source and target are identical (recursive

connections) are possible. Multiple connections between one unit and the same input port

of another unit are redundant, and therefore prohibited. This is checked by SNNS.

Each connection has a weight (or strength) assigned to it. The e�ect of the output of one

unit on the successor unit is de�ned by this value: If it is negative, then the connection

is inhibitory, i.e. decreasing the activity of the target unit, if it is positive, it has an

excitatory, i.e. activity enhancing, e�ect.

The most frequently used network architecture is built hierarchically bottom-up. The

input into a unit comes only from the units of preceeding layers. Because of the unidirec-

tional ow of information within the net they are also called feed-forward nets (as example

see the neural net classi�er introduced in chapter 3.4). In many models a full connectivity

between all units of adjoining levels is assumed.

5

Changing it to 16 layers can be done very easily in the source code of the interface.

3.2. UPDATE-MODES 19

Weights are represented as oats with nine decimals accuracy.

3.1.3 Sites

A unit with sites doesn't have a direct input any more. All incomming links lead to di�erent

sites, where the arriving weighted output signals of preceeding units are processed with

di�erent user de�nable site functions (see picture 3.2). The result of the site function is

represented by the site value. The activation function then takes this value of each site as

network input.

The SNNS simulator does not allow multiple connections from a unit to the same input

port of a target unit. Connections to di�erent sites of the same target units are allowed.

Similarly, multiple connections from one unit to di�erent input sites of itself are allowed

as well.

3.2 Update-Modes

To compute the new activation values of the units, the SNNS simulator running on a

sequential workstation processor has to visit all of them in some sequential order. This

order is de�ned in the so called Update Mode. Five update modes for general use are

implemented in SNNS. The �rst is a synchronous mode, all other are asynchronous, i.e.

in these modes units see the new outputs of their predecessors if these have �red before

them.

1. synchronous : The units change their activation all together after each step. To do

this, the kernel �rst computes the new activations of all units from their activation

functions in some arbitrary order. After all units have their new activation value

assigned, the new output of the units is computed. The outside spectator gets the

impression that all units have �red simultaneously (in sync).

2. random permutation: The units compute their new activation and output function

sequentially. The order is de�ned randomly, but each unit is selected exactly once

in every step.

3. random: The order is de�ned by a random number generator. Thus it is not guar-

anteed that all units are visited exactly once in one update step, i.e. some units may

be updated several times, some not at all.

4. serial : The order is de�ned by ascending internal unit number. If units are created

with ascending unit numbers from input to output units, this is the fastest mode.

Note that the use of serial mode is not advisable if the units of a network are not in

ascending order.

5. topological : The kernel sorts the units after their topology. This order corresponds

to the natural propagation of activity from input to output. In pure feed-forward

nets the input activation reaches the output especially fast with this mode, because

many units already have their �nal output which doesn't change later on.

20 CHAPTER 3. NEURAL NETWORK TERMINOLOGY

Additionally, there are 11 more update modes for special network topologies implemented

in SNNS.

1. CPN : For learning with counterpropagation.

2. Time Delay : This mode takes into account the special connections of time delay

networks. Connections have to be updated in the order in which they become valid

through the course of time.

3. ART1 Stable, ART2 Stable and ARTMAP Stable: Three update modes for the three

adaptive resonance theory network models. They propagate a pattern through the

network until a stable state has been reached.

4. ART1 Synchronous, ART2 Synchronous and ARTMAP Synchronous : Three other

update modes for the three adaptive resonance theory networkmodels. They perform

just one propagation step with each call.

5. CC and RCC : Special update modes for the cascade correlation and recurrent cas-

cade correlation meta algorithms.

6. BPTT : For recurrent networks, that are trained with `backpropagation through

time'.

Note, that all update modes only apply to the forward propagation phase, the backward

phase in learning procedures like backpropagation is not a�ected at all.

3.3 Learning in Neural Nets

An important focus of neural network research is the question of how to adjust the weights

of the links to get the desired system behaviour. This modi�cation is very often based on

the Hebb-rule, which states that a link between two units is strengthened, if both units

are active at the same time. The Hebb-rule in its general form is:

�w

ij

= g(a

j

(t); t

j

)h(o

i

(t); w

ij

)

where:

w

ij

weight of the link from unit i to unit j

a

j

(t) activation of unit j in step t

t

j

teaching input, in general the desired output of unit j

o

i

(t) output of unit i at time t

g(: : :) function, depending on the activation of the unit and the

teaching input

h(: : :) function, depending on the output of the preceding element and the

current weight of the link

Training a feed-forward neural network with supervised learning consists of the following

procedure:

3.3. LEARNING IN NEURAL NETS 21

An input pattern is presented to the network. The input is then propagated forward in

the net until activation reaches the output layer. This constitutes the so called forward

propagation phase.

The output of the output layer is then compared with the teaching input. The error,

i.e. the di�erence (delta) �

j

between the output o

j

and the teaching input t

j

of a target

output unit j is then used together with the output o

i

of the source unit i to compute

the necessary changes of the link w

ij

. To compute the deltas of inner units for which no

teaching input is available, (units of hidden layers) the deltas of the following layer, which

are already computed, are used in a formula given below. In this way the errors (deltas)

are propagated backward, so this phase is called backward propagation.

In online learning, the weight changes �w

ij

are applied to the network after each training

pattern, i.e. after each forward and backward pass. In o�ine learning or batch learning

the weight changes are cummulated for all patterns in the training �le and the sum of all

changes is applied after one full cycle (epoch) through the training pattern �le.

The most famous learning algorithm which works in the manner described is currently

backpropagation. In the backpropagation learning algorithm online training is usually

signi�cantly faster than batch training, especially in the case of large training sets with

many similar training examples.

The backpropagation weight update rule, also called generalized delta-rule reads as follows:

�w

ij

= � �

j

o

i

�

j

=

(

f

0

j

(net

j

)(t

j

� o

j

) if unit j is a output-unit

f

0

j

(net

j

)

P

k

�

k

w

jk

if unit j is a hidden-unit

where:

� learing factor eta (a constant)

�

j

error (di�erence between the real output and

the teaching input) of unit j

t

j

teaching input of unit j

o

i

output of the preceding unit i

i index of a predecessor to the current unit j

with link w

ij

from i to j

j index of the current unit

k index of a successor to the current unit j

with link w

jk

from j to k

There are several backpropagation algorithms supplied with SNNS: one \vanilla backprop-

agation" called Std Backpropagation, one with momentum term and at spot elimination

called BackpropMomentum and a batch version called BackpropBatch. They can be cho-

sen from the remote panel with the button OPTIONS and the menu selection select

learning function.

22 CHAPTER 3. NEURAL NETWORK TERMINOLOGY

In SNNS, one may either set the number of training cycles in advance or train the network

until it has reached a prede�ned error on the training set.

3.4 An Example of a simple Network

This paragraph describes a simple example network, a neural network classi�er for capital

letters in a 5x7 matrix, which is ready for use with the SNNS simulator. Note that this is

a toy example which is not suitable for real character recognition.

� Network-Files: letters0.net (untrained), letters.net (trained)

� Pattern-File: letters.pat

The network in �gure 3.3 is a feed-forward net with three layers of units (two layers of

weights) which can recognize capital letters. The input is a 5x7 matrix, where one unit

is assigned to each pixel of the matrix. An activation of +1:0 corresponds to \pixel set",

while an activation value of 0:0 corresponds to \pixel not set". The output of the network

consists of exactly one unit for each capital letter of the alphabet.

The following activation function and output function are used by default:

� Activation function: Act logistic

� Output function: Out identity

Figure 3.3: Example network of the letter classi�er

The net has one input layer (5x7 units), one hidden layer (10 units) and one output layer

(26 units named 'A' : : : 'Z'). The total of (35 � 10 + 10 � 26) = 610 connections form the

distributed memory of the clasi�er.

On presentation of a pattern that resembles the uppercase letter \A", the net produces

as output a rating of which letters are probable.

Chapter 4

Using the Graphical User Interface

This chapter describes how to use XGUI, the two dimensional X-Window Graphical User

Interface to SNNS. XGUI is the usual way to interact with SNNS on Unix workstations.

It tells how to call SNNS and explains the multiple windows and their buttons and menus.

Together with the next chapter 5 it is probably the most important chapter in this manual.

4.1 XGUI Files

The graphical user interface consists of the following �les:

snns or xgui SNNS simulator program (XGUI and simulator kernel

linked together into one executable program)

default.cfg default con�guration (see chapter 4.2.7)

help.hdoc help text used by XGUI

The �le snns in the home directory of SNNS is only a symbolic link to the �le

xgui/bin/<architecture>/xgui

where <architecture> is one of the currently supported machine architectures, like sparc,

dec, sun3, RS6000, hp, pc386 (with Unix System V) or other.

The �le Readme xgui contains changes performed after printing of this document. The user

is urged to read it, prior to using XGUI. The �le help.hdoc is explained in chapter 4.2.8.

XGUI looks for the �les default.cfg and help.hdoc �rst in the current directory. If not

found there, it looks in the directory speci�ed by the environment variable XGUILOADPATH.

By the command

setenv XGUILOADPATH Path

this variable can be set to the path where default.cfg and help.hdoc are located. This

is best done by an entry to the �les .login or .cshrc. Advanced users may change the

help �le or the default con�guration for their own purposes. This should be done, however,

only on a copy of the �les in a private directory.

23

24 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

SNNS uses the following extensions for its �les:

.net network �les (units and link weights)

.pat pattern �les

.cfg con�guration settings �les

.txt text �les (log �les)

.res result �les (unit activations)

A simulator run is started by the command

snns [<netfile>.net] [<pattern>.pat] [<config>.cfg] [options] Return

where valid options are

-font <name> : font for the simulator

-dfont <name> : font for the displays

-mono : black & white on color screens

-help : help screen to explain the options

in the home directory of SNNS or by directly calling

<SNNS-directory>/xgui/bin/<architecture>/xgui

from any directory. Note that the shell variable XGUILOADPATH must be set properly

before, or SNNS will complain about missing �les default.cfg and help.hdoc.

The executable xgui may also be called with X-Window parameters as arguments.

Setting the display font can be advisable, if the font selected by the SNNS automatic font

detection looks ugly. The following example starts the display with the 8x13 font

1

.

snns -dfont 8x13 Return

The fonts which are available can be detected with the program xfontsel (not part of this

distribution). The current version of SNNS can not handle fonts wider than 8 pixels.

4.2 Windows of XGUI

The graphical user interface has the following windows which can be positioned and han-

dled independently (toplevel shells):

� Manager panel with Info panel called xgui-info, near the bottom left the Menu

button GUI , to open other windows, a message line at the right of this button, and

a line with status information at the bottom .

� several Displays, to display the network graphically in two dimensions.

� File browser for loading and saving networks and pattern �les (called with the button

GUI in the manager panel).

1

On some systems the fonts 7x14 or 7x14bold are preferable

4.2. WINDOWS OF XGUI 25

� 3D View panel to control the three dimensional network visualization component.

� Remote panel for simulator operations.

� Bignet panel to facilitate the creation of big regular feed-forward nets, time delay,

ART1, ART2 and ARTMAP networks.

� Cascade panel for control of the learning phase of cascade correlation learning.

� Graph display, to explain the network error during teaching graphically.

� Inversion display, to control the network analyzing tool.

� Weight Display, to show the weight matrix as a WV- or Hinton diagram.

� Help windows to display the help text.

Of these windows only the Manager panel and one or more 2D displays are open from the

start, the other windows are opened with the button GUI in the manager panel.

Additionally, there are several popup windows (transient shells) which only become visible

when called and block all other XGUI windows. Some of them are mentioned below:

� Setup panel for adjustments of the graphical representation. (called with the button

SETUP in the displays)

� Layer panel for setting the layer numbers (called with the button LAYERS in the

Setup panel)

� Site edit panel for editing prototypes and sites. (OPTIONS in the remote panel)

There are a number of other popup windows which are invoked by pressing a button in

one of the main windows or choosing a menu. Of the above mentioned popup windows,

the �le panel is the most important, since it is needed to load or save networks, pattern

and con�guration �les.

Figure 4.1: Manager panel, remote panel and a display.

Figure 4.1 shows a typical screen setup. The following description explains the tasks

and possibilities of the various windows. A detailed description of the handling will be

presented later.

26 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

The Manager panel contains all elements needed for working with the interface. It

should therefore always be kept visible. The Info panel in the Manager panel displays the

attributes of two units and the data of the link between them. All attributes may also be

changed here. The data displayed here is important for many editor commands.

The other windows are called with the button GUI . QUIT is used to leave XGUI. The

message line shows information about current operations, like additional information on

severe errors.

In each of the Displays a part of the network is displayed, while all settings can be

changed using Setup. These windows also allow access to the network editor using the

keyboard (see also chapter 5).

The Remote panel constitutes a remote control for the simulator operations.

In the File panel a log �le can be speci�ed, where all XGUI output to stdout is copied

to. A variety of data about the network can be displayed here. Also a record is kept on

the load and save of �les and on the teaching.

The complete help text from the �le help.hdoc is available in the text section of a help

window. Information about a word can be retrieved by marking that word in the text and

then clicking LOOK or MORE . A list of keywords can be obtained by a click to TOPICS .

This window also allows context sensitive help, when the editor is used with the keyboard.

4.2.1 Con�rmer

Figure 4.2: A normal con�rmer and a message con�rmer.

The Con�rmer is a window where the graphical user interface displays important in-

formation or requires the user to con�rm destructive operations. The con�rmer always

appears in the middle of the screen and blocks XGUI until a button of the con�rmer is

clicked (see �gure 4.2).

4.2. WINDOWS OF XGUI 27

4.2.2 Manager Panel

Figure 4.3: Manager panel

Figure 4.3 shows theManager panel with info panel, a message and the status line. From

the manager panel all other elements that have a di�erent, independent window assigned

can be called. Because this window is of such central importance, it is recommended to

keep it visible all the time.

1. Button GUI

If this menu button is clicked and the mouse button is kept pressed, the following

menu to request a window appears. The user can request several displays or help

windows, but only one remote panel or text window.

FILE

DISPLAY

3D VIEW

INVERSION

WEIGHTS

GRAPH

REMOTE

BIGNET

CASCADE

PRINT

HELP

QUIT

2. Manager Message

This line features messages about a current operation or its termination. Possible

messages are:

28 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

Found : : : help topic was found.

Update link done. new weight was assigned.

Listing : : : a list is being produced.

n steps. Calculating : : : n update steps are performed

right now.

Saving : : : something is being saved.

: : :saved. : : : got saved.

Loading : : : something is beingloaded.

: : :loaded. : : : got loaded.

HELP: : : : help information to : : : is displayed.

Warnings and errors are also displayed here. The following warnings are possible:

No target/source unit selected action can not be performed,

because no target/source is

selected in the info panel.

Can't update link. : : : weight can not be assigned,

because link does not exist.

This unit has no successors! the unit has no successors.

This unit has no predecessors! the unit has no predecessors.

No more units in this network! net has no further units.

LOAD/SAVE : : :aborted. load/save was aborted,

either by the user, or by an

error.

This is also the place of the command sequence display of the editor. When the

command is activated, a message about the execution of the command is displayed.

In most cases, however, only a blinking is visible, because the commands are executed

too fast. For a listing of the comand sequences see chapter 5.

3. Status line

This line shows the current position of the mouse in a display, the number of selected

units, and the position of ags, set by the editor.

If safe appears next to the ag icon, the safety ag was set by the user (see chap-

ter 5). In this case XGUI forces the user to con�rm any delete actions.

The next icon shows a small seleted unit. The corresponding number is the number

of currently selected units. This is important, because there might be selected units

not visible in the displays. The selection of units a�ects only editor operations (see

chapter 5 and 5.3).

4.2.3 Info Panel

The info panel displays all data of two units and the link between them. The unit at

the beginning of the link is called SOURCE, the other TARGET. One may run sequentially

through all connections or sites of the TARGET unit with the arrow buttons and look at the

corresponding source units and vice versa.

4.2. WINDOWS OF XGUI 29

This panel is also very important for editing, since some operations refer to the displayed

TARGET unit or (SOURCE!TARGET) link. A default unit can also be created here, whose

values (activation, bias, IO-type, subnet number, layer numbers, activation function, and

output function) are copied into all selected units of the net.

The source unit of a link can also be speci�ed in a 2D display by pressing the middle

mouse button, the target unit by releasing it. To select a link between two units the user

presses the middle mouse button on the source unit in a 2D display, moves the mouse to

the target unit while holding down the mouse button and releases it at the target unit.

Now the selected units and their link are displayed in the info panel. If no link exists

between two units selected in a 2D display, the TARGET is displayed with its �rst link,

thereby changing SOURCE.

Figure 4.4: Info panel

In table 4.1 the various �elds are listed. The �elds in the line FUNC have the following

meaning (from left to right): Name of the activation function, name of the output function,

name of the f-type. The �elds in the line LINK have the following meaning: weight, site

value, site function, name of the site.

Unit number, unit subnet number, site value, and site function can not be modi�ed.

Note: The speci�ed SNNS value ranges must be obeyed. Values outside the speci�ed range

are not rejected by the graphical user interface. Numerical values of the type float have

the following format: Sign, one digit, decimal point, and �ve decimal digits. For bias and

weight two digits before the decimal point are critical. To change attributes of type text,

the cursor has to be exactly in the corresponding �eld.

There are the following buttons for the units (from left to right):

1. Arrow button : Select �rst TARGET of SOURCE (arrow button at TARGET) or select

�rst SOURCE of the TARGET (arrow button at SOURCE).

2. Arrow button : Select next TARGET of SOURCE (arrow button at TARGET) or select

next SOURCE of the TARGET (arrow button at SOURCE).

3. FREEZE : Unit is frozen, if this button is inverted. Changes become active only after

SET is clicked.

30 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

Name Type set by value range

no. (unit no.) Label 1..2

31

subn. (subnet no.) Label �32736..32735

io (IO-type) Label OPTIONS I(nput), O(utput), H(idden),

D(ual), S(pecial)

act. (activation) Text input oat; usually �1:0..+1:0

iact. (initial act.) Text input oat; usually �1:0..+1:0

out. (output) Text input oat; usually �1:0..+1:0

bias Text input oat

name Text input 25 letters or underscore

func (act *) Label OPTIONS as available

func (out *) Label OPTIONS as available

link (weight) Text input oat

site (site value) Label oat

func (site *) Label as available

name (site name) Label as available at TARGET

Table 4.1: Table of the unit, link and site �elds in the Info panel

4. DEF : The default unit is assigned the displayed values of TARGET and SOURCE as-

signed (only activation, bias, IO-type, subnet number, layer numbers, activation

function and output function).

5. OPTIONS : Calls the following menu:

change io-type change the IO-type

change f-type change f-type

display activation function graph of the activation function

change activation function change activation function

note: f-type gets lost!

display output function graph of the output function

change output function change output function

note: f-type gets lost!

assign layers assign unit to layers

list all sources list all predecessors

list all targets list all successors

6. SET : Only after clicking this button the attributes of the corresponding unit are

set to the speci�ed value. The unit is also redrawn. Therefore the values can be

changed without immediate e�ect on the unit.

There exist the following buttons for links (from left to right):

1. : Select �rst link of the TARGET unit.

2. : Select next link of the TARGET unit.

3. OPTIONS : Calls the following menu:

4.2. WINDOWS OF XGUI 31

list current site of TARGET list of all links of the

current site.

list all sites of TARGET list all sites of the TARGET

list all links from SOURCE list all links starting

at the SOURCE

delete site delete displayed site

note: f-type gets lost!

add site add new site to TARGET

note: f-type gets lost!

4. SET : Only after clicking this button the link weight is set.

4.2.4 2D Displays

A 2D Display or simply Display is always part of the user interface. It serves to display

the network topology, the units' activations and the weights of the links. Each unit is

located on a grid position, which simpli�es the positioning of the units. The distance

between two grid points (grid width) can be changed from the default 37 pixels to other

values in the setup panel.

The current position, i.e. the grid position of the mouse, is also numerically displayed at

the bottom of the manager panel. The x-axis is the horizontal line and valid coordinates

lie in the range �32736 : : :+32735 (short integer).

The current version displays units as boxes, where the size of the box is proportional to the

value of the displayed attribute. Possible attributes are activation, initial activation, bias,

and output. A black box represents a positive value, an empty box a negative value. The

size of the unit varies between 16x16 and 0 pixels according to the value of scaleFaktor.

The parameter scaleFaktor has a default value of 1:0, but may be set to values between

0:0 and 2:0 in the setup panel. Each unit can be displayed with two of several attributes.

One above the unit and one below the unit. The attributes to be displayed can be selected

in the setup panel.

Links are shown as solid lines, with optional numerical display of the weight in the center

of the line and/or arrow head pointing to the target unit. These features are optional,

because they heavily a�ect the drawing speed of the display window.

A display can also be frozen with the button FREEZE (button gets inverted). It is after-

wards neither updated anymore

2

, nor does it accept further editor commands.

An iconi�ed display is not updated and therefore consumes (almost) no CPU time. If a

window is closed, its dimensions and setup parameters are saved in a stack (LIFO). This

means that a newly requested display gets the values of the window assigned that was last

closed.

For better orientation, the window title contains the subnet number which was speci�ed

for this display in the setup panel.

2

If a frozen display has to be redrawn, e.g. because an overlapping window was moved, it gets updated.

If the network has changed since the freeze, its contents will also have changed!

32 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

4.2.5 Setup Panel

Changes to the kind of display of the network can be performed in the Setup panel. All

settings become valid only after the button DONE is clicked. The whole display window

is then redrawn.

Figure 4.5: Setup Panel.

1. Buttons to control the display of unit information: The �rst two lines of the Setup

panel (units top and units bottom) contain two buttons each to set the unit

parameter that can be displayed at the top resp. the bottom of the unit.

The button ON toggles the display of information which can be selected with the

button SHOW . The unit name, unit number, or the z-value (3D coordinate) can

be displayed above the unit, the activation, initial activation, bias, or output of the

unit below the unit. The numerical attribute selected with the button SHOW at the

bottom of the unit (activation, initial activation, output, or bias) also determines

the size of the unit in the graphical representation.

It is usually not advisable to switch o� top (number or name), because this informa-

tion is needed for reference to the info panel. An unnamed unit is always displayed

with its number.

2. Buttons to control the display of link information: The third line consists of three

buttons to select the display of link data, ON , �2:35 , ! .

� ON determines whether to draw links at all (then ON is inverted),

� �2:35 displays link weights at the center of the line representing the link,

� ! displays arrow heads of the links pointing from source to target unit.

4.2. WINDOWS OF XGUI 33

3. LAYERS invokes another popup window to select the display of up to eight di�erent

layers in the display window. Layers are being stacked like transparent sheets of

paper and allow for a selective display of units and links. These layers need NOT

correspond with layers of units of the network topology (as in multilayer feed-forward

networks), but they may do so. Layers are very useful to display only a selected sub-

set of the network. The display of each layer can be switched on or o� independently.

A unit may belong to several layers at the same time. The assignment of units to

layers can be done with the menu assign layers invoked with the button OPTIONS

in the main Info panel.

4. COLOR sets the 2D{display colors. On monochrome terminals, black on white or

white on black representation of the network can be selected from a popup menu.

On color displays, a color editing window is opened. This window consists of three

parts:

Figure 4.6: Color Setup Panel.

The palette of available colors at the top, the buttons to select the item to be colored

in the lower left region, and the color preview window in the lower right region.

A color is set by clicking �rst at the appropriate button (TEXT , BACKGROUND ,

or SELECTION) and then at the desired color in the color palette. The selected

setting is immediately displayed in the color preview window. All colors may be

set in any order and any number of times. The changes become e�ective in the

corresponding 2D{display only after both the setup panel and the color edit panel

have been dismissed with the DONE button.

5. Sliders for the selection of link display parameters, links positive and links

negative:

There are two slidebars to set thresholds for the display of links. When the bubble is

moved, the current threshold is displayed in absolute and relative value at the bottom

of the setup panel. Only those links with an absolute value above the threshold

are displayed. The range of the absolute values is 0:0 � linkTrigger � 10:0 (see

also paragraph 4.2.4). The trigger values can be set independently for positive and

negative weights. With these link thresholds the user can concentrate on the strong

34 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

connections. Reducing the number of links drawn is an e�ective means to speed up

the drawing of the displays, since line drawing takes most of the time to display a

network.

Note: The links that are not drawn are only invisible. They still remain accessible,

i.e. they are a�ected by editor operations.

6. units scale: This slidebar sets the parameter scaleFactor for the size of the growing

boxes of the units. Its range is 0:0 � scaleFaktor � 2:0. A scale factor of 0:5 draws

the unit with activation 0:5 with full size. A scale factor of 2:0 draws a unit with

activation 1:0 only with half size.

7. grid width: This value sets the width of the grid on which the units are placed.

For some nets, changing the default of 37 pixels may be useful, e.g. to be able to

better position the units in a geometrical pattern. Overlapping tops and bottoms

occur if a grid size of less than 35 pixels is selected (26 pixels if units are displayed

without numerical values). This overlap, however, does not a�ect computation in

any way.

8. origin (grid): These two �elds determine the origin of the window, i.e. the grid

position of the top left corner. There, the left �eld represents the x coordinate, the

right is the y coordinate. The origin is usually (0, 0). Setting it to (20, 0) moves the

display 20 units to the right and 10 units down in the grid.

9. subnet number: This �eld adjusts the subnet number to be displayed in this window.

Values between �32736 and +32735 are possible here.

4.2.6 Unit Function Displays

The characteristic functions of the units can be displayed in a graphic representation.

For this purpose separate displays have been created, that can be called by selecting

the options display activation function or display output function in the menu

under the options button of the target and source unit in the info panel.

Figure 4.7: The logistic activation function in a new picture range

4.2. WINDOWS OF XGUI 35

Figure 4.7 shows an example of an activation function. The window header states whether

it is an activation or an output function, as well as whether it is the current function of

the source or target unit.

The size of the window is as exible as the picture range of the displayed function. The

picture range can be changed by using the dialog widgets at the top of the function

displays. The size of the window may be changed by using the standard mechanisms of

your window manager.

If the displayed function changes, e.g. because a new activation function has been de-

�ned for the unit, the display window changes automatically to reect the new situation.

Thereby it is easy to get a quick overview of the available functions by opening the func-

tion displays and then clicking through the list of available functions (This list can be

obtained by selecting select activation function or select output function in the

unit menu).

4.2.7 File Browser

The �le browser handles all load and save operations of networks, patterns, con�gura-

tions, and the contents of the text window. Con�gurations include number, location and

dimension of the displays as well as their setup values and the name of the layers.

Figure 4.8: File Panel.

In the top line, the path (without trailing slash) where the �les are located is entered. This

can be done either manually, or by double{clicking on the list of �les and directories in

the box on the left. A double click to [..] deletes the last part of the path, and a double

click to a subdirectory appends that directory to the path. In the input �eld below the

36 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

path �eld, the name for the desired �le (without extension) is entered. Again, this can

be done either manually, or by double{clicking on the list of �les in the box on the left.

Whether a pattern �le, network �le, or other �le is loaded/saved depends on the settings

of the corresponding buttons below. With the setting of picture 4.8 a network �le would

be selected. A �le name beginning with a slash (/) is taken to be an absolute path.

Note: The extension .net for nets, .pat for patterns, .cfg for con�gurations, and .txt

for texts is added automatically and must not be speci�ed. After the name is speci�ed the

desired operation is selected by clicking either LOAD or SAVE . In the case of an error

the con�rmer appears with an appropriate message. These errors might be:

Load: The �le does not exist or has the wrong type

Save: A �le with that name already exists

Depending upon the error and the response to the con�rmer, the action is aborted or

executed anyway.

NOTE: In version 3.0 the directories must be executable in order to be processed properly

by the program!

4.2.7.1 Loading and Saving Networks

If the user wants to load a network which is to replace the net in main memory, the

con�rmer appears with the remark that the current network would be erased upon loading.

If the question 'Load?' is answered with YES , the new network is loaded. The �le name

of the network loaded last appears in the window title of the manager panel.

Note 1: Upon saving the net the kernel compacts its internal data structures if the units

are not numbered consecutively. This happens if units are deleted during the creation

of the network. All earlier listings with unit numbers then become invalid. The user

is therefore advised to save and reload the network after creation, before continuing the

work.

Note 2: The assignment of patterns to input or output units may be changed after a

network save, if an input or output unit is deleted and is inserted again. This is caused

because the activation values in the pattern �le are assigned to units in ascending order

of the unit number. However, this order is no longer the same because the new input

or output units may have been assigned higher unit numbers than the existing input or

output units. So some components of the patterns may be assigned incorrectly.

4.2.7.2 Loading and Saving Patterns

Patterns are combinations of activations of input or output units. Pattern �les, like nets,

are administrated by the SNNS kernel. During loading the kernel checks whether the

number of input and output units is the same as in the network in memory. If this is not

the case, the operation is aborted. The �lename of the pattern loaded last is displayed in

the window title of the remote panel.

4.2. WINDOWS OF XGUI 37

Note: The activation values are read and assigned to the input and output units sequen-

tially in ascending order of the unit numbers (see above).

4.2.7.3 Loading and Saving Con�gurations

A con�guration contains the location and size of all displays with all setup parameters and

the names of the various layers. This information can be loaded and saved separately, since

it is independent from the networks. Thereby it is possible to de�ne one con�guration

for several networks, as well as several con�gurations for the same net. When XGUI is

started, the �le default.cfg is loaded automatically.

4.2.7.4 Saving a Result �le

A result �le contains the activations of all output units. These activations are obtained

by performing one pass of forward propagation. After pressing the SAVE button a popup

window lets the user select which patterns are to be tested and which patterns are to

be saved in addition to the test output. Picture 4.9 shows that popup window. Since

the result �le has no meaning for the loaded network a load operation is not useful and

therefore not supported.

Figure 4.9: Result File Popup

4.2.7.5 De�ning the Log File

In the log �le messages to stdout can be stored which document the simulation run. The

protocol contains �le operations, de�nitions of values set by clicking the SET button in

the info panel, as well as a teaching protocol (cycles, parameters, errors). In addition, the

user can output data about the network to the log �le with the help of the info panel. If

no log �le is loaded, output takes place only on stdout. If no �le name is speci�ed when

clicking LOAD , a possibly open log �le is closed and further output is restricted to stdout.

38 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

4.2.8 Help Windows

An arbitrary number of help windows may be opened, each displaying a di�erent part of

the text. For a display of context sensitive help about the editor commands, the mouse

must be in a display and the key h must be pressed. Then the last open help window

appears with a short description.

Figure 4.10: Help Window

A special feature is the possibility of searching a given string in the help text. For this,

the search string is selected in the text window (e.g. by a double click).

1. LOOK : After clicking this button, SNNS looks for the �rst appearance of the marked

string, starting at the beginning of the help document. If the string is found, the

corresponding paragraph is displayed.

2. MORE : After clicking this button, SNNS looks for the �rst appearance of the marked

string, starting at the position last visited by a call to the help function. If the text

was scrolled afterwards, this position might not be on the display anymore.

Note: All help calls look for the �rst appearance of a certain string. These strings start

with the sequence ASTERISK-BLANK (*), to assure the discovery of the appropriate

text position. With this knowledge it is easy to modify the �le help.hdoc to adapt it to

special demands, like storing information about unit types or patterns. The best approach

would be to list all relevant keywords at the end of the �le under the headline * TOPICS",

so that the user can select this directory by a click to TOPICS .

4.2. WINDOWS OF XGUI 39

4.2.9 Print Panel

The print panel handels the Postscript output. A 2D-display can be associated with the

printer. All setup options and values of this display will be printed. Color and encapsulated

Postscript are also supported. The output device is either a printer or a �le. If the output

device is a printer, a '.ps'-�le is generated and spooled in the /tmp directory. It has a

unique name starting with the pre�x `snns'. The directory must be writable. When xgui

terminates normally, all SNNS spool �les are deleted.

Figure 4.11: Printer panel

The following �elds can be set in the Printer Panel, which is shown in �gure 4.11.

1. File Name resp. Command Line:

If the output device is a �le: the �lename.

If the output device is a printer: the command line to start the printer.

The �lename in the command line has to be '$1'.

2. Destination: Selects the output device. Toggles the above input line between File

Name and Command Line.

3. Paper: Selects the paper format.

4. Orientation: Sets the orientation of the display on the paper. Can be 'portrait' or

'landscape'.

5. Border (mm): Sets the size of the horizontal and vertical borders on the sheet in

millimeters.

6. AutoScale: Scales the network to the maximum possible size on the paper if turned

on.

7. Aspect: If on, scaling in X and Y direction is done uniformly.

8. X-Scale: Scale factor in X direction. Valid only if AutoScale is 'OFF'.

9. Y-Scale: Scale factor in Y direction. Valid only if AutoScale is 'OFF'.

DONE : Cancels the printing and closes the panel.

40 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

PRINT : Starts printing.

NETWORK : Opens the network setup panel. This panel allows the speci�cation of several

options to control the way the network is printed.

The variables that can be set here include:

1. x-min, y-min, x-max and y-max describe the section to be printed.

2. Unit size: FIXED : All units have the same size.

VALUE : The size of a unit depends on its value.

3. Shape: Sets the shape of the units.

4. Text: SOLID : The box around text overwrites the background color and the links.

TRANSPARENT : No box around the text.

5. Border: A border is drawn around the network, if set to 'ON'.

6. Color: If set, the value is printed color coded.

7. Fill Intens: The �ll intensity for units on monochrome printers.

8. Display: Selects the display to be printed.

Figure 4.12: The Network Panel

4.2.10 Remote Panel

With this window the simulator is operated (as with a remote control). Figure 4.13

shows this window. Table 4.2 lists all window elements. The meaning of the 5 learning

parameters depends upon the learning function selected with the menu select learning

function invoked by the button OPTIONS of the remote panel.

There are the following text �elds, buttons and menu buttons:

4.2. WINDOWS OF XGUI 41

Figure 4.13: Remote Panel

Name Type Value Range

STEPS (update-Steps) Text 0 � n

COUNT (counter for steps) Label 0 � n

PATTERN (number of current pattern) Label 0 � n

CYCLES Text 0 � n

LEARN (5 parameters: �, �, d, : : :) Text oat

UPDATE (5 parameters) Text oat

Table 4.2: Input �elds of the remote panel

1. STEPS: This text �eld speci�es the number of update steps of the network. With

Topological Order selected as update mode (chosen with the menu select update

function from the button OPTIONS in the remote panel) one step is su�cient to

propagate information from input to output. With other update modes or with

recursive networks, several steps might be needed.

2. STEP : After clicking this button, the simulator kernel executes the number of steps

speci�ed in the text �eld STEPS. If STEPS is zero, the units are only redrawn. The

update mode selected with the button MODE is used (see chapter 3.2). The �rst

update step in the mode topological takes longer than the following, because the

net is sorted topologically �rst. Then all units are redrawn.

3. INFO : Information about the net is written to the text window.

4. INIT : A popup window to set parameters to initialize the network is called.

5. RESET : The counter is reset and the units are assigned their initial activation.

6. The text �eld after RESET displays the steps, executed so far.

7. CYCLES: This text �eld speci�es the number of learning cycles. It is mainly used in

conjunction with the next two buttons. A cycle (also called an epoch sometimes) is

a unit of training where all patterns of a pattern �le are presented to the network

once.

8. SINGLE : The net is trained with a single pattern for the number of training cycles

de�ned in the �eld CYCLES. The text window reports the error of the network every

42 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

CYCLES=10 cycles, i.e. independent of the number of training cycles only 10 numbers

are generated. (This prevents ooding the user with network performance data and

slowing down the training by �le I/O).

The error reported in the text window is the sum of the quadratic di�erences between

the teaching input and the real output over all output units. The average error per

output unit is given behind ave.

9. ALL : The net is trained with all patterns for the number of training cycles speci�ed

in the �eld CYCLES. This is the usual way to train networks from the graphical user

interface. Note, that if cycles has a value of, say, 100, the button ALL causes SNNS

to train all patterns once (one cycle = one epoch) and repeat this 100 times (NOT

training each pattern 100 times in a row and then applying the next pattern).

The error reported in the text window is the sum of the quadratic di�erence between

the teaching input and the real output over all output units summed over the number

of patterns presented. The average error per output unit is given behind ave.

10. STOP : Stops the teaching cycle. After completion of the current step or teaching

cycle, the simulation is halted immediately.

11. TEST : With this button, the user can test the behaviour of the net with all patterns

loaded. The activation values of input and output units are copied into the net. (For

output units see also button SHOW). Then the number of update steps speci�ed in

STEPS are executed.

12. SHUFFLE : It is important for optimal learning that the various patterns are pre-

sented in di�erent order in the di�erent cycles. A random sequence of patterns is

created automatically, if SHUFFLE is switched on.

13. OPTIONS : O�ers the following menu:

select update function select the order for updating the activations

select learning function select the learning function

select init function select the initialization function

jog weights change all link weights randomly

edit f-types edit/create f-types

edit sites edit/create sites

delete all patterns delete all patterns in main memory

clear SNNS delete network and patterns

The �rst six menu items open a popup window for further selections, while the last

two take e�ect immediately.

If jog weights is selected, a popup window appears to specify the range (low limit

.. high limit). This operation a�ects all links in the network.

The menu item select learning function invokes a menu to select a learning

function (learning procedure). The following learning functions are currently imple-

mented:

4.2. WINDOWS OF XGUI 43

ART1 ART1 learning algorithm

ART2 ART2 learning algorithm

ARTMAP ARTMAP learning algorithm

(all ART models by Carpenter & Grossberg)

Backpropagation \vanilla" Backpropagation

BackpropBatch Backpropagation for batch training

BackpropMomentum Backpropagation with momentum term

BackpropBatchThroughTime Batch-Backpropagation for recurrent networks

BackpropThroughTime Backpropagation for recurrent networks

Backpercolation Backpercolation 1 (Mark Jurik)

CascadeCorrelation Cascade correlation meta algorithm

Counterpropagation Counterpropagation (Robert Hecht-Nielsen)

Quickprop Quickprop (Scott Fahlman)

QuickpropThroughTime Quickprop for recurrent networks

RadialBasisLearning Radial Basis Functions

Rec.CascadeCorrelation Cascade correlation for recurrent networks

RProp Resilient Propagation learning

TimeDelayBackprop Backpropagation for TDNNs (Alex Waibel)

14. PATTERN: This text �eld displays the current pattern number.

15. DELETE : The pattern whose number is displayed in the text �eld PATTERN is deleted

from the pattern �le.

16. MOD : The pattern whose number is displayed in the text �eld PATTERN is modi�ed

in place.

The current activation of the input units and the current output values of output

units of the network loaded make up the input and output pattern. These values

might have been set with the network editor and the Info panel before.

17. NEW : A new pattern is de�ned that is added behind existing patterns. Input and

output values are de�ned as above.

18. GOTO : The simulator advances to the pattern whose number is displayed in the text

�eld PATTERN.

19. Arrow buttons , , , and : With these buttons, the user can navigate through

all patterns loaded, as well as jump directly to the �rst and last pattern. Unlike with

the button TEST no update steps are performed here.

20. SHOW : With this button, the user speci�es the changes to the activation values of

the output units when a pattern is applied with TEST . The following table gives

the three alternatives:

None The output units remain unchanged.

Output The output values are computed and set,

activations remain unchanged.

Activation The activation values are set.

21. LEARN: The �ve parameters of the learning functions vary depending on the learning

44 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

functions used. For the learning functions that are already built in into SNNS, they

are given in section 4.3.

22. UPDATE: The �ve parameters of the update functions vary depending on the network

model used. They are not used in the learning functions distributed in this release

of SNNS. They have been used in other network models which we implemented, but

currently do not distribute.

4.2.11 Weight Display

Figure 4.14: A typical Hinton diagram

The weight display window is a separate window specialized for displaying the weights of

a network. It is called from the manager panel in the gui menu with the entry weights.

On black-and-white screens the weights are represented as squares with changing size in

a Hinton diagram, while on color screens, �xed size squares with changing colors are used

(WV-diagrams).

On small networks, all connections are displayed at the same time. With larg nets the

display changes to a viewport, where only a small portion of the net is visible and the user

is able to move around with scrollbars.

In a Hinton diagram, the size of a square corresponds to the absolute size of the correlated

link. A �lled square represents negative, an empty square positive links. The maximum

size of the squares is computed automatically, to allow an optimal use of the display. In

a WV diagram color is used to code the value of a link. Here, a bright red is used for

large negative values and a bright green is used for positive values. Intermediate numbers

have a lighter color and the value zero is represented by white. The user also has got the

possibility to retrieve the numerical value of the link by clicking any mouse button while

4.2. WINDOWS OF XGUI 45

the mouse pointer is on the square. A popup window then gives source and target unit of

the current link as well as its weight.

For a better overall orientation the numbers of the units are printed all around the display

and a grid with user de�nable size is used. In this numbering the units on top of the

screen represent source units, while numbers to the left and right represent target units.

4.2.12 Graph Window

Figure 4.15: Graph window

Graph is a tool to visualize the error developement of a net. The program is started by

clicking the menu item `graph' in the pulldown menu under the GUI button of the info

panel. Figure 4.15 shows the window which appears on the screen after selecting the entry

GRAPH.

Graph is only active after calling it. This means, the development of the error is only

drawn as long as the window is not closed. The advantage of this implementation is, that

the simulator is not slowed down as long as graph is closed

3

. If the window is iconi�ed,

graph remains active.

The error curve of the net is plotted until the net is initialized or a new net is loaded, in

which case the cycle counter is reset to zero. The window, however, is not cleared until

the clear button is pressed. This opens the possibility to compare several error curves

in a single display (see also �gure 4.15). The maximum number of curves, which can be

displayed simultaneously is 25. If a 26

th

curve is tried to be drawn, the con�rmer appears

with an error message.

When the curve reaches the right end of the window, an automatic rescale of the x-axis is

performed. This way, the whole curve always remains visible.

3

The loss of power by graph should be minimal.

46 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

In the top region of the graph window, six buttons for handling the display are located:

CLEAR : Clears the screen of the graph window and sets the cycle counter to zero.

DONE : Closes the graph window and resets the cycle counter.

For both the x{ and y{axis the following two buttons are available:

: Reduce scale in one direction.

: Enlarge scale in one direction.

While the simulator is working all buttons are blocked.

The graph window can be resized by the mouse like every X-window. Changing the size

of the window does not change the size of the scale.

4.3 Parameters of the Learning Functions

In �gure 4.16 the remote panel is displayed again for easier reference. The following

learning parameters (from left to right) are used by the learning functions that are already

built into SNNS:

Figure 4.16: Learning parameters in the remote panel

� Std Backpropagation ("Vanilla\ Backpropagation),

BackpropBatch and

TimeDelayBackprop

1. �: learning parameter, speci�es the step width of the gradient descent.

Typical values of � are 0:1 : : : 1:0. Some small examples actually train even

faster with values above 1, like 2.0.

2. d

max

: the maximum di�erence d

j

= t

j

� o

j

between a teaching value t

j

and an

output o

j

of an output unit which is tolerated, i.e. which is propagated back as

d

j

= 0. If values above 0.9 should be regarded as 1 and values below 0.1 as 0,

then d

max

should be set to 0:1. This prevents overtraining of the network.

Typical values of d

max

are 0, 0.1 or 0.2.

4.3. PARAMETERS OF THE LEARNING FUNCTIONS 47

� BackpropMomentum (Backpropagation with momentum term and at spot elimina-

tion):

1. �: learning parameter, speci�es the step width of the gradient descent.

Typical values of � are 0:1 : : : 1:0. Some small examples actually train even

faster with values above 1, like 2.0.

2. �: momentum term, speci�es the amount of the old weight change (relative to

1) which is added to the current change.

Typical values of � are 0 : : :1:0.

3. c: at spot elimination value, a constant value which is added to the derivative

of the activation function to enable the network to pass at spots of the error

surface.

Typical values of c are 0 : : :0:25, most often 0.1 is used.

4. d

max

: the maximum di�erence d

j

= t

j

� o

j

between a teaching value t

j

and an

output o

j

of an output unit which is tolerated, i.e. which is propagated back as

d

j

= 0. See above.

The general formula for Backpropagation used here is

�w

ij

(t+ 1) = � �

j

o

i

+ � �w

ij

(t)

�

j

=

(

(f

0

j

(net

j

) + c)(t

j

� o

j

) if unit j is a output-unit

(f

0

j

(net

j

) + c)

P

k

�

k

w

jk

if unit j is a hidden-unit

� BackpropThroughTime (BPTT),

BatchBackpropThroughTime (BBPTT):

1. �: learning parameter, speci�es the step width of the gradient descent.

Typical values of � for BPTT and BBPTT are 0:005 : : :0:1.

2. �: momentum term, speci�es the amount of the old weight change (relative to

1) which is added to the current change.

Typical values of � are 0:0 : : :1:0.

3. backstep: the number of backprop steps back in time. BPTT stores a sequence

of all unit activations while input patterns are applied. The activations are

stored in a �rst-in-�rst-out queue for each unit.

The largest backstep value supported is 10.

� Quickprop:

1. �: learning parameter, speci�es the step width of the gradient descent.

Typical values of � for Quickprop are 0:1 : : :0:3.

48 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

2. �: maximum growth parameter, speci�es the maximum amount of weight

change (relative to 1) which is added to the current change

Typical values of � are 1:75 : : :2:25.

3. �: weight decay term to shrink the weights.

Typical values of � are 0:0001. Quickprop is rather sensitive to this parameter.

It should not be set too large.

4. d

max

: the maximum di�erence d

j

= t

j

� o

j

between a teaching value t

j

and an

output o

j

of an output unit which is tolerated, i.e. which is propagated back as

d

j

= 0. See above.

� QuickpropThroughTime (QPTT):

1. �: learning parameter, speci�es the step width of the gradient descent.

Typical values of � for QPTT are 0:005 : : : 0:1.

2. �: maximum growth parameter, speci�es the maximum amount of weight

change (relative to 1) which is added to the current change

Typical values of � are 1:2 : : : 1:75.

3. �: weight decay term to shrink the weights.

Typical values of � are 0:0005 : : :0:00005.

4. backstep: the number of quickprop steps back in time. QPTT stores a sequence

of all unit activations while input patterns are applied. The activations are

stored in a �rst-in-�rst-out queue for each unit.

The largest backstep value supported is 10.

� Counterpropagation:

1. �: learning parameter of the Kohonen layer.

Typical values of � for Counterpropagation are 0:1 : : :0:7 .

2. �: learning parameter of the Grossberg layer.

Typical values of � are 0 : : :1:0.

3. �: threshold of a unit.

We often use a value � of 0.

� Backpercolation 1:

1. �: global error magni�cation. This is the factor in the formula � = �(t � o),

where � is the internal activation error of a unit, t is the teaching input and o

the output of a unit.

Typical values of � are 1. Bigger values (up to 10) may also be used here.

4.3. PARAMETERS OF THE LEARNING FUNCTIONS 49

2. �: If the error value � drops below this threshold value, the adaption according

to the Backpercolation algorithm begins. � is de�ned as:

� =

1

pN

p

X

N

X

j o � � j

3. d

max

: the maximum di�erence d

j

= t

j

� o

j

between a teaching value t

j

and an

output o

j

of an output unit which is tolerated, i.e. which is propagated back as

d

j

= 0. See above.

� RadialBasisLearning:

1. centers: determines the learning rate �

1

used for the modi�cation of center

vectors.

2. bias (p): determines the learning rate �

2

, used for the modi�cation of the

parameters p of the base function. p is stored as bias of the hidden units.

3. weights: inuences the training of all link weights that are leading to the output

layer as well as the training of the bias of all output neurons.

4. delta max.: If the actual error is smaller than the maximum allowed error (delta

max.) the corresponding weights are not changed.

5. momentum:inuences the amount of the momentum{term during training.

� ART1

1. �: vigilance parameter. If the quotient of active F

1

units divided by the number

of active F

0

units is below �, an ART reset is performed.

� ART2

1. �: vigilance parameter. Speci�es the minimal length of the error vector r (units

r

i

).

2. a: Strength of the inuence of the lower level in F

1

by the middle level.

3. b: Strength of the inuence of the middle level in F

1

by the upper level.

4. c: Part of the length of vector p (units p

i

) used to compute the error.

5. �: Threshold for output function f of units x

i

and q

i

.

� ARTMAP

1. �

a

: vigilance parameter for ART

a

subnet. (quotient

jF

a

1

j

jF

a

0

j

)

2. �

b

: vigilance parameter for ART

b

subnet. (quotient

jF

b

1

j

jF

b

0

j

)

3. �: vigilance parameter for inter ART reset control. (quotient

jF

ab

j

jF

b

2

j

)

50 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

� RPROP Learning (resilient propagation)

1. delta

0

: starting values for all 4

ij

. Default value is 0.1.

2. delta

max

: the upper limit for the update values 4

ij

.The default value of 4

max

is 50:0.

� Cascade Correlation (CC) and

Recurrent Cascade Correlation (RCC)

CC and RCC are not learning functions themselves. They are meta algorithms to

build and train optimal networks. However, they have a set of standard learning

functions embedded. Here these functions require modi�ed parameters. The embed-

ded learning functions are:

{ Backpropagation:

1. �

1

: learning parameter, speci�es the step width of gradient decent mini-

mizing the net error.

2. �

1

: momentum term, speci�es the amount of the old weight change, which

is added to the current change.

3. c: at spot elimination value, a constant value which is added to the deriva-

tive of the activation function to enable the network to pass at spots on

the error surface.

4. �

2

: learning parameter, speci�es the step width of gradient ascent maxi-

mizing the covariance.

5. �

2

: momentum term speci�es the amount of the old weight change, which

is added to the current change.

The general formula for this learning function is:

�w

ij

(t+ 1) = �S(t) + ��w

ij

(t� 1)

The slopes @E=@w

ij

and �@C=@w

ij

are abbreviated by S. This abbreviation

is valid for all embedded functions. By changing the sign of the gradient value

@C=@w

ij

, the same learning function can be used to maximize the covariance

and to minimize the error.

{ Rprop

1. �

�

1

: decreasing factor, speci�es the factor by which the update-value �

ij

is

to be decreased when minimizing the net error. A typical value is 0:5.

2. �

+

1

: increasing factor, speci�es the factor by which the update-value �

ij

is

to be increased when minimizing the net error. A typical value is 1:2

3. not used.

4. �

�

2

: decreasing factor, speci�es the factor by which the update-value �

ij

is

to be decreased when maximizing the covariance. A typical value is 0:5.

4.4. CREATING AND EDITING UNIT PROTOTYPES AND SITES 51

5. �

+

2

: increasing factor, speci�es the factor by which the update-value �

ij

is

to be increased when maximizing the covariance. A typical value is 1:2

The weight change is computed by:

�w

ij

(t) =

8

>

>

>

<

>

>

>

:

��

ij

(t� 1)�

�

; if S(t)S(t� 1) < 0

��

ij

(t� 1)�

+

; if S(t) > 0 and S(t� 1) > 0

�

ij

(t � 1)�

+

; if S(t) < 0 and S(t� 1) < 0

0; else

where �

ij

(t) is de�ned as follows: �

ij

(t) = �

ij

(t � 1)�

+=�

. Furthermore, the

condition 0 < �

�

< 1 < �

+

should not be violated.

{ Quickprop

1. �

1

: learning parameter, speci�es the step width of the gradient descent

when minimizig the net error. A typical value is 0:0001

2. �

1

: maximum growth parameter, realizes a kind of dynamic momentum

term. A typical value is 2.0.

3. �: weight decay term to shrink the weights. A typical value is <= 0:0001.

4. �

2

: learning parameter, speci�es the step width of the gradient ascent when

maximizing the covarinance. A typical value is 0:0007

5. �

2

: maximum growth parameter, realizes a kind of dynamic momentum

term. A typical value is 2.0.

The used formula is:

�w

ij

(t) =

8

>

<

>

:

�S(t); if �w

ij

(t� 1) = 0

S(t)

S(t�1)�S(t)

�w

ij

(t� 1); if �w

ij

(t� 1) 6= 0 and

S(t)

S(t�1)�S(t)

< �

��w

ij

(t� 1); else

4.4 Creating and Editing Unit Prototypes and Sites

Figure 4.17 shows the panels to edit unit prototypes (f-types) and sites. The change of

the f-type is performed on all units of that type. Therefore, the functionality of all units

assigned to an f-type can easily be changed. The elements in the panel have the following

meaning:

� SELECT : Selects of the activation and output function.

� CHOOSE : Chooses the f-type to be changed.

� SET : Makes the settings/changes permanent. Changes in the site list are not set

(see below).

� NEW , DELETE : Creates or deletes an f-type.

� ADD , DELETE : F-types also specify the sites of a unit. Therefore these two buttons

are necessary to add/delete a site in the site list.

52 CHAPTER 4. USING THE GRAPHICAL USER INTERFACE

Figure 4.17: Edit panels for unit prototypes (f-types) and sites

Note: The number and the selection of sites can not be changed after the creation of an

f-type.

The elements in the edit panel for sites are almost identical. A site is selected for change

by clicking at it in the site list.

� SELECT : Selects the new site function. The change is performed in all sites in the

net with the same name.

� SET : Validates changes/settings.

� NEW : Creates a new site.

� DELETE : Deletes the site marked in the site list.

Chapter 5

Graphical Network Editor

The graphical user interface of SNNS has a network editor built in. With the network

editor it is possible to generate a new network or to modify an existing network in various

ways. There also exist commands to change the display style of the network.

As an introduction, operations on networks without sites will be discussed �rst, since they

are easier to learn and understand. Operations that have a restricted or slightly di�erent

meaning for networks with sites are displayed with the extension (Sites!) in the following

overview. These changes are discussed in detail in the chapter 5.5.

As usual with most applications of X-Windows, the mouse must be in the window in

which an input is to appear. This means that the mouse must be in the display window

for editor operations to occur. If the mouse is moved in a display, the status indicator of

the manager panel changes each time a new raster postion in the display is reached.

Di�erent displays of a network can be seen as di�erent views of the same object. This

means that all commands in one display may a�ect objects (units, links) in the other

displays. Objects are moved or copied in a second display window in the same way as

they are moved or copied in the �rst display window.

The editor operations are usually invoked by a sequence of 2 to 4 keys on the keyboard.

They only take place when the last key of the command (e.g. deletion of units) is pressed.

We found out, that for some of us the fastest way to work with the editor was to move the

mouse with one hand and to type on the keyboard with the other hand. Keyboard actions

and mouse movement may occur at the same time, the mouse position is only relevant

when the last key of the sequence is pressed.

The keys that are su�cient to invoke a part of a command are written in capital letters

in the commands. The message line in the manager panel indicates the completed parts

of the command sequence. Invalid keys are ignored by the editor.

As an example, if one presses the keys U for Units and C for Copy the status line changes

as follows:

status line command comment

> Units operation on units

53

54 CHAPTER 5. GRAPHICAL NETWORK EDITOR

Units> Copy copying of units

Units Copy> (the sequence is not completed yet)

To the left of the caret the fully expanded input sequence is displayed. At this place

also a message is displayed when a command sequence is accepted and the corresponding

operation is called. This serves as feedback, especially if the operation takes some time.

If the operation completes quickly, only a short icker of the text displayed can be seen.

Some error messages appear in the con�rmer, others in the message line.

5.1 Editor Modes

To work faster, three editor modes have been introduced which render the �rst key un-

necessary. In normal mode all sequences are possible, in unit mode all sequences that deal

with units (that start with U), and in link mode all command sequences that refer to links

(i.e. start with L).

Example (continued from above):

status line command comment

Units Copy> Quit the input command may be cancelled

any time

> Mode

Mode> Units enter unit mode

Units> Copy copying : : :

Units Copy> Quit cancel again

Units> Quit leaves the current mode unchanged

Units> Copy copying : : :

Units Copy> Return return to normal mode

>

The mode command is useful, if several unit or link commands are given in sequence.

Return cancels a command, like Quit does, but also returns to normal mode.

5.2 Selection

5.2.1 Selection of Units

Units are selected by clicking on the unit with the left mouse button. On Black&White

terminals, selected units are shown with crosses, on color terminals in a special, user

de�ned, color. The default is yellow. By pressing and holding the mouse button down and

moving the mouse, all units within a rectangular area can be selected, like in a number of

popular drawing programs. It is not signi�cant in what direction the rectangle is opened.

5.3. USE OF THE MOUSE 55

To remove a unit or group of units from a selection, one presses the SHIFT key on the

keyboard while selecting the unit or group of units again. This undoes the previous

selection for the speci�ed unit or group of units. Alternatively, a single unit can be

deselected with the right mouse button.

If the whole selection should be reset, one clicks in an empty raster position. The number

of selected units is displayed at the bottom of the manager panel next to a stylised selection

icon.

Example (setting activations of a group of units):

The activations of a group of units can be set to a speci�c value as follows: Enter the

value in the activation value �eld of the target unit in the info panel. Select all units that

should obtain the new value. Then enter the command to set the activation (Units Set

Activation).

5.2.2 Selection of Links

Since it is often very hard to select a single link with the mouse in a dense web of links, in

this simulator all selections of links are done with the reference to units. That is, links are

selected via their source and target units. To select a link or a number of links, �rst a unit

or a group units must be selected in the usual way with the left mouse button (indicated

by crosses through the units). Then the mouse pointer is moved to another unit. All links

between the selected set of units and the unit under the mouse pointer during the last key

stroke of the link command are then selected.

Example (deleting a group of links):

All links from one unit to several other units are deleted as follows: First select all target

units, then point to the source unit with the mouse. Now the command Links Delete

from Source unit deletes all the speci�ed links.

As can be seen from the examples, for many operations three types of information are

relevant: �rst a group of selected units, second the position of the mouse and the unit

associated with this position and third some attributes of this unit which are displayed in

the info panel. Therefore it is good practise to keep the info panel visible all the time.

In section 5.6 a longer example dialogue to build the well known XOR network (see also

�gure 3.1) is given which shows the main interaction principles.

5.3 Use of the Mouse

Besides the usual use of the mouse to control the elements of a graphical user interface

(buttons, scroll bars etc.) the mouse is heavily used in the network editor. Many important

functions like selection of units and links need the use of the mouse. The mouse buttons

of the standard 3 button mouse are used in the following way within a graphic window:

� left mouse button:

56 CHAPTER 5. GRAPHICAL NETWORK EDITOR

Selects a unit. If the mouse is moved with the button pressed down, a group of

units in a rectangular area is selected. If the SHIFT key is pressed at the same time,

the units are deselected. The direction of movement with the mouse to open the

rectangular area is not signi�cant, i.e. one can open the rectangle from bottom right

to top left, if convenient.

If the left mouse button is pressed together with the CONTROL key, a menu appears

with all alternatives to complete the current comand sequence. The menu items

that display a trailing ' !' indicate that the mouse position of the last command of

a command sequence is important. The letter 'T' indicates that the target unit in

the info panel plays a role. A (~) denotes that the command sequence is not yet

completed.

� right mouse button:

Undo of a selection. Klicking on a selected unit with the right mouse button only

deselects this unit. Klicking on an empty raster position resets the whole selection.

� middle mouse button:

Selects the source unit (on pressing the button down) and the target unit (on releas-

ing the button) and displays them both in the info panel. If there is no connection

between the two units, the target unit is displayed with its �rst source unit. If the

button is pressed on a source unit and released over an empty target position, the

link between the source and the current (last) target is displayed. If there is no such

link the display remains unchanged. Conversely, if the button is pressed on an empty

source position and released on an existing target unit, the link between the current

(last) source unit and the selected target unit is displayed, if one exists. This is a

convenient way to inspect links.

In order to indicate the position of the mouse even with a small raster size, there is always

a sensitive area of at least 16x16 pixels wide.

5.4 Short Command Reference

The following section briey describes the commands of the network editor. Capital letters

denote the keys that must be hit to invoke the command in a command sequence.

The following commands are possible within any command sequence

� Quit: quit a command

� Return: quit a command and return to normal mode (see chapter 5.1)

� Help: get help information. A help window pops up (see chapter 4.2.8)

As already mentioned, some operations have a di�erent meaning if there exist units with

sites in a network. These operations are indicated with the su�x (Sites!) and are described

in more detail in chapter 5.5. Commands that manipulate sites are also included in this

overview. They start with the �rst command Sites.

5.4. SHORT COMMAND REFERENCE 57

� Flags Safety: sets/resets safety ag (a ag to prompt the user before units

or links are deleted; additional question, if units with di�erent subnet numbers

are selected.)

1. Link Commands:

� Links Set: sets all links between the selected units to the weight displayed in

the info panel (independent of sites)

� Links Make : : : : creates or modi�es connections

� Links Make Clique: connects every selected unit with every other selected

unit, plus itself (Sites!)

� Links Make to Target unit: creates links from all selected source units to a

single target unit (under the mouse pointer) (Sites!)

� Links Make from Source unit: creates links from a single source unit (under

the mouse pointer) to all selected target units (Sites!)

� Links Make Double: doubles all links between the selected units, i.e. generates

two links (from source to target and from target to source) from each single

link) (Sites!)

� Links Make Invers: changes the direction of all links between the selected

units (Sites!)

� Links Delete Clique: deletes all links between all selected units (Sites!)

� Links Delete to Target unit: deletes all ingoing links from a selected group

of units to a single target unit (under the mouse pointer) (Sites!)

� Links Delete from Source unit: deletes all outgoing links from a single

source unit (under the mouse pointer) to a selected group of units (Sites!)

� Links Copy Input: copies all input links leading into the selected group of

units as new input links to the target unit (under the mouse pointer) (Sites!)

� Links Copy Output: copies all output links starting from the selected group of

units as new output links of the source unit (under the mouse pointer) (Sites!).

� Links Copy All: copies all input and output links from the selected group of

units as new input or output links to the unit under the mouse pointer (Sites!)

� Links Copy Environment: copies all links between the selected units and the

TARGET unit to the actual unit, if there exist units with the same relative dis-

tance (Sites!)

2. Site Commands:

� Sites Add: add a site to all selected units

� Sites Delete: delete a site from all selected units

� Sites Copy with No links: copies the current site of the Target unit to all

selected units. Links are not copied

58 CHAPTER 5. GRAPHICAL NETWORK EDITOR

� Sites Copy with All links: ditto, but with all links

3. Unit Commands:

� Units Freeze: freeze all selected units

� Units Unfreeze: reset freeze for all selected units

� Units Set Name: sets name to the name of Target

� Units Set io-Type: sets I/O type to the type of Target

� Units Set Activation: sets activation to the activation of Target

� Units Set Initial activation: sets initial activation to the initial activa-

tion of Target

� Units Set Output: sets output to the output of Target

� Units Set Bias: sets bias to the bias of Target

� Units Set Function Activation: sets activation function. Note: all selected

units loose their default type (f-type)

� Units Set Function Output: sets output function Note: all selected units

loose their default type (f-type)

� Units Set Function Ftype: sets default type (f-type)

� Units Insert Default: inserts a unit with default values. The unit has no

links

� Units Insert Target: inserts a unit with the same values as the Target unit.

The unit has no links

� Units Insert Ftype: inserts a unit of a certain default type (f-type) which is

determined in a popup window

� Units Delete: deletes all selected units

� Units Move: all selected units are moved. The mouse determines the desti-

nation position of the TARGET unit (info-panel). The selected units and their

position after the move are shown as outlines.

� Units Copy : : : : copies all selected units to a new position. The mouse position

determines the destination position of the TARGET unit (info-panel).

� Units Copy All: copies all selected units with all links

� Units Copy Input: copies all selected units with their input links

� Units Copy Output: copies all selected units and their output links

� Units Copy None: copies all selected units, but no links

� Units Copy Structure : : : : copies all selected units and the link structure

between these units, i.e. a whole subnet is copied

5.4. SHORT COMMAND REFERENCE 59

� Units Copy Structure All: copies all selected units, all links between them,

and all input and output links to and from these units

� Units Copy Structure Input: copies all selected units, all links between

them, and all input links to these units

� Units Copy Structure Output: copies all selected units, all links between

them, and all output links from these units

� Units Copy Structure None: copies all selected units and all links between

them

� Units Copy Structure Back binding: copies all selected units and all links

between them and inserts additional links from the new to the corresponding

original units (Sites!)

� Units Copy Structure Forward binding: copies all selected units and all

links between them and inserts additional links from the original to the corre-

sponding new units (Sites!)

� Units Copy Structure Double binding: ditto, but inserts additional links

from the original to the new units and vice versa (Sites!)

4. Mode Commands:

� Mode Units: unit mode, shortens command sequence if one wants to work with

unit commands only. All subsequences after the Units command are valid then

� Mode Links: analogous to Mode Units, but for link commands

5. Graphics Commands:

� Graphics All: redraws the local window

� Graphics Complete: redraws all windows

� Graphics Direction: draws all links from and to a unit with arrows in the

local window

� Graphics Links: redraws all links in the local window

� Graphics Move: moves the origin of the local window such that the Target

unit is displayed at the position of the mouse pointer

� Graphics Origin: moves the origin of the local window to the position indi-

cated

� Graphics Grid: displays a graphic grid at the raster positions in the local

window

� Graphics Units: redraws all units in the local window

60 CHAPTER 5. GRAPHICAL NETWORK EDITOR

5.5 Editor Commands

We now describe the editor commands in more detail. The description has the following

form that is shown in two examples:

Links Make Clique (selection LINK : site-popup)

First comes the command sequence (Links Make Clique) which is invoked by pressing

the keys L, M, and C in this order. The items in parentheses indicate that the command

depends on the objects of a previous selection of a group of units with the mouse (selection),

that it depends on the value of the LINK �eld in the info panel, and that a site-popup

appears if there are sites de�ned in the network. The options are given in their temporal

order, the colon ':' stands for the moment when the last character of the command sequence

is pressed, i.e. the selection and the input of the value must precede the last key of the

command sequence.

Units Set Activation (selection TARGET :)

The command sequence Units Set Activation is invoked by pressing the keys U, S,

A, in that order. The items in parentheses indicate that the command depends on the

selection of a group of units with the mouse (selection) which it depends on the value

of the TARGET �eld and that these two things must be done before the last key of the

command sequence is pressed.

The following table displays the meaning of the symbols in parenthesis:

selection all selected units

: now the last key of a command sequence is pressed

[unit] the raster cursor is placed on a unit

[empty] the raster cursor is placed on an empty positon

default the default values are used

TARGET the TARGET unit �eld in the info panel must be set

LINK the LINK �eld in the info panel must be set

site-links only links to the current site in the info panel play a role

site the current site in the info panel must be set

popup a popup menu appears to ask for a value

site-popup if there are sites de�ned in the network, a popup

appears to choose the site for the operation

dest? a raster position for a destination must be clicked

with the mouse (e.g. in Units Move)

In the case of a site-popup a site for the operation can be chosen from this popup

window. However, if one clicks the DONE button immediately afterwards, only the direct

input without sites is chosen. In the following description, this direct input should be

regarded as a special case of a site.

All newly generated units are assigned to all active layers in the display in which the

command for their creation was issued.

The following keys are always possible within a command sequence:

5.5. EDITOR COMMANDS 61

� Quit: quit a command

� Return: quit and return to normal mode

� Help: get help information to the commands

A detailed description of the commands follows:

1. Flags Safety (:)

If the SAFETY-Flag is set, then with every operation which deletes units, sites or

links (Units Delete : : : or Links Delete : : :) a con�rmer asks if the units, sites

or links should really be deleted. If the ag is set, this is shown in the manager panel

with a safe after the little ag icon. If the ag is not set, units, sites or links are

deleted immediately. There is no undo operation for these deletions.

2. Links Set (selection LINK :)

All link weights between the selected units are set to the value of the LINK �eld in

the info panel.

3. Links Make Clique (selection LINK : site-popup)

A full connection between all selected units is generated. Since links may be deleted

selectively afterwards, this function is useful in many cases where many links in both

directions are to be generated.

If a site is selected, a complete connection is only possible if all units have a site

with the same name.

4. Links Make from Source unit (selection [unit] : site-popup)

Links Make to Target unit (selection [unit] : site-popup)

Both operations connect all selected units with a single unit under the mouse pointer.

In the �rst case, this unit is the source, in the second, it is the target. All links get

the value of the LINK �eld in the info panel.

If sites are used, only links to the selected site are generated.

5. Links Make Double (selection :)

All unidirectional links become double (bidirectional) links. That is, new links in the

opposite direction are generated. Immediately after creation the new links possess

the same weights as the original links. However, the two links do not share the

weight, i.e. subsequent training usually changes the similarity.

Connections impinging on a site only become bidirectional, if the original source

units has a site with the same name.

6. Links Make Inverse (selection :)

All unidirectional links between all selected units change their direction. They keep

their original value.

62 CHAPTER 5. GRAPHICAL NETWORK EDITOR

Connetions leading to a site are only reversed, if the original source unit has a site

of the same name. Otherwise they remain as they are.

7. Links Delete Clique (selection : site-popup)

Links Delete from Source unit (selection [unit] : site-popup)

Links Delete to Target unit (selection [unit] : site-popup)

These three operations are the reverse of Links Make in that they delete the con-

nections. If the safety ag is set (the word safe appears behind the ag symbol in

the manager panel), a con�rmer window forces the user to con�rm the deletion.

8. Links Copy Input (selection [unit] :)

Links Copy Output (selection [unit] :)

Links Copy All (selection [unit] :)

Links Copy Input copies all input links of the selected group of units to the single

unit under the mouse pointer. If sites are used, incoming links are only copied if a

site with the same name as in the original units exists.

Links Copy Output copies all output links of the selected group of units to the

single unit under the mouse pointer.

Links Copy All Does both of the two operations above

9. Links Copy Environment (selection TARGET site-links [unit] :)

This is a rather complex operation: Links Copy Environment tries to duplicate the

links between all selected units and the current TARGET unit in the info panel at

the place of the unit under the mouse pointer. The relative position of the selected

units to the TARGET unit plays an important role: if a unit exists that has the same

relative position to the unit under the mouse cursor as the TARGET unit has to one

of the selected units, then a link between this unit and the unit under the mouse

pointer is created.

The result of this operation is a copy of the structure of links between the selected

units and the TARGET unit at the place of the unit under the mouse pointer. That

is, one obtains the same topological structure at the unit under the mouse pointer.

This is shown in �gure 5.1. In this �gure the structure of the TARGET unit and

the four Env units is copied to the unit UnderMousePtr. However, only two units

are in the same relative position to the UnderMousePtr as the Env units are to the

Target unit, namely corrEnv3 corresponding to Env3 and corrEnv4 corresponding

to Env4. So only those two links from the units corrEnv3 to UnderMousePtr and

from corrEnv4 to UnderMousePtr are generated.

10. Sites Add (selection : Popup)

A site which is chosen in a popup window is added to all selected units. The command

has no e�ect for all units which already have a site of this name (because the names

of all sites of a unit must be di�erent)

5.5. EDITOR COMMANDS 63

Figure 5.1: Example to Links Copy Environment

11. Sites Delete (selection : Popup)

The site that is chosen in the popup window is deleted at all selected units that

possess a site of this name. Also all links to this site are deleted. If the safety ag

is set (in the manager panel the word safe is displayed behind the ag icon at the

bottom), then a con�rmer window forces the user to con�rm the deletion �rst.

12. Sites Copy with No links (selection SITE :)

Sites Copy with All links (selection SITE :)

The current site of the Target unit is added to all selected units which do not have

this site yet. Links are copied together with the site only with the command Site

Copy with All links. If a unit already has a site of that name, only the links are

copied.

13. Units Freeze (selection :)

Units Unfreeze (selection :)

These commands are used to freeze or unfreeze all selected units. Freezing means,

that the unit does not get updated anymore, and therefore keeps its activation and

output. Upon loading input units change only their activation, while keeping their

output. For output units, this depends upon the setting of the pattern load mode.

In the load mode Output only the output is set. Therefore, if frozen output units

are to keep their output, another mode (None or Activation) has to be selected. A

learning cycle, on the other hand, executes as if no units have been frozen.

14. Units Set Name (selection TARGET :)

Units Set Initial activation (selection TARGET :)

Units Set Output (selection TARGET :)

Units Set Bias (selection TARGET :)

Units Set io-Type (selection : Popup)

Units Set Function Activation (selection : Popup)

Units Set Function Output (selection : Popup)

64 CHAPTER 5. GRAPHICAL NETWORK EDITOR

Units Set Function F-type (selection : Popup)

Sets the speci�c attribute of all selected units to a common value. Types and func-

tions are de�ned by a popup window. The operations can be aborted by immediately

clicking the DONE button in the popup without selecting an element of the list.

The remaining attributes are read from the corresponding �elds of the Target unit

in the info panel. The user can of course change the values there (without clicking

the SET button) and then execute Units Set : : : . A di�erent approach would be to

make a unit target unit (click on it with the middle mouse button) which already has

the desired values. This procedure is very convenient, but works only if appropriate

units already exist. A good idea might be to create a couple of such model units

�rst, to be able to quickly set di�erent attribute sets in the info panel.

15. Units Insert Default ([empty] default :)

Units Insert Target ([empty] TARGET :)

Units Insert F-type ([empty] : popup)

This command is used to insert a unit with the IO-type hidden. It has no connec-

tions and its attributes are set according to the default values and the Target unit.

With the command Units Insert Default, the unit gets no F-type and no sites.

With Units Insert F-type an F-type and sites have to be selected in a popup

window. Units Insert Target creates a copy of the target unit in the info panel.

If sites/connections are to be copied as well, the command Units Copy All has to

be used instead.

16. Units Delete (selection :)

All selected units are deleted. If the safety ag is set (safe appears in the manager

panel behind the ag symbol) the deletion has to be con�rmed with the con�rmer.

17. Units Move (selection TARGET : dest?)

All selected units are moved. The Target unit is moved to the position at which

the mouse button is clicked. It is therefore recomended to make one of the units

to be moved target unit and position the mouse cursor over the target unit before

beginning the move. Otherwise all moving units will have an o�set from the cursor.

This new postion must not be occupied by an unselected unit, because a position

conict will result otherwise. All other units move in the same way relative to that

position. The command is ignored, if:

(a) the target position is occupied by an unselected unit, or

(b) units would be moved to grid positions already taken by unselected units.

It might happen that units are moved beyond the right or lower border of the display.

These units remain selected, as long as not all units are deselected (click the right

mouse button to an empty grid position).

5.5. EDITOR COMMANDS 65

As long as no target is selected, the editor reacts only to Return, Quit or Help.

Positioning is eased by displaying the unit outlines during the move. The user may

also switch to another display. If this display has a di�erent subnet number, the

subnet number of the units changes accordingly. Depending upon layer and subnet

parameters, it can happen that the moved units are not visible at the target.

If networks are generated externally, it might happen that several units lie on the

same grid position. Upon selection of this position, only the unit with the smallest

number is selected. With \Units Move" the user can thereby clarify the situation.

18. Units Copy : : : (selection : dest?)

Units Copy All

Units Copy Input

Units Copy Output

Units Copy None

This command is similar to Units Move. Copy creates copies of the selected units at

the positions that would be assigned by Move. Another di�erence is that if units are

moved to grid positions of selected units the command is ignored. The units created

have the same attributes as their originals, but di�erent numbers. Since unit types

are copied as well the new units also inherit the activation function, output function

and sites. There are four options regarding the copying of the links. If no links are

copied, the new unit has no connections. If, for example, the input links are copied,

the new units have the same predecessors as their originals.

19. Units Copy Structure : : : (selection : dest?)

Units Copy Structure All

Units Copy Structure Input

Units Copy Structure Output

Units Copy Structure None

Units Copy Structure : : :binding (selection : dest? site-popup)

Units Copy Structure Back binding

Units Copy Structure Forward binding

Units Copy Structure Double binding

These commands are re�nements of the general Copy command. Here, all links

between the selected units are always copied as well. This means that the substruc-

ture is copied form the originals to the new units. On a copy without Structure

these links would go unnoticed. There are also options, which additional links are

to be copied. If only the substructure is to be copied, the command Units Copy

Structure None is used.

66 CHAPTER 5. GRAPHICAL NETWORK EDITOR

Figure 5.2: An Example for Units Copy Structure with Forward binding

The options with binding present a special feature. There, links between original

and copied units are inserted automatically, in addition to the copied structure links.

Back, Forward and Double specify thereby the direction of the links, where \back"

means the direction towards the original unit. An example is shown in picture 5.2.

If sites are used, the connections to the originals are assigned to the site selected

in the popup. If not all originals have a site with that name, not all new units are

linked to their predecessors.

With these various copy options, large, complicated nets with the same or similar

substructures can be created very easily.

20. Mode Units (:)

Mode Links (:)

Switches to the mode Units or Links. All sequences of the normal modes are

available. The keys U and L need not be pressed anymore. This shortens all sequences

by one key.

21. Units : : :Return (:)

Links : : :Return (:)

Returns to normal mode after executing Mode Units.

22. Graphics All (:)

Graphics Complete (:)

Graphics Units (:)

Graphics Links (:)

These commands initiate redrawing of the whole net, or parts of the net. With

the exception of Graphics Complete, all commands a�ect only the current display.

They are especially usefull after a deletion of links.

5.6. EXAMPLE DIALOGUE 67

23. Graphic Direction ([unit] :)

This command assigns arrow heads to all links leading to/from the unit selected by

the mouse. This is done independently from the setup values. XGUI, however, does

not recall that links have been drawn. This means, that after moving a unit, these

links remain in the window, if the display of links is switched o� in the SETUP.

24. Graphics Move (TARGET [empty]/[unit] :)

The origin of the window (upper left corner) is moved in a way that the target unit

in the info panel becomes visible at the position speci�ed by the mouse.

25. Graphics Origin ([empty]/[unit] :)

The position speci�ed by the mouse becomes new origin of the display (upper left

corner).

26. Graphics Grid (:)

This command draws a point at each grid position. The grid, however, is not re-

freshed, therefore one might have to redo the command from time to time.

5.6 Example Dialogue

A short example dialogue for the construction of an XOR network might clarify the use

of the editor. First the four units are created. In the info panel the target name \input"

and the Target bias \0" is entered.

Status Display Command Remark

> Mode Units switch on mode units

Units> set mouse to position (3,5)

Units> Insert Target insert unit 1 with the attributes

of the Target unit here.

repeat for position (5,5).

Units> name = \hidden", bias = �2:88

Units> Insert Target position (3,3); insert unit 3

Units> name = \output", bias = �3:41

Units> Insert Target position (3,1); insert unit 4

Units> Return return to normal mode

> Mode Links switch on mode links

Links> select both input units

and set mouse to third unit

(\hidden")

Links> specify weight \6:97"

Links> Make to Target create links

Links> set mouse to unit 4 (\output");

specify weight \�5:24"

68 CHAPTER 5. GRAPHICAL NETWORK EDITOR

Links> Make to Target create links

Links> deselect all units and

select unit 3

Links> set mouse to unit 4 and

specify \11:71" as weight.

Links> Make to Target create links

Now the topology is de�ned. The only actions remaining are to set the IO types and

the four patterns. To set the IO types, one can either use the command Units Set

Default io-type, which sets the types according to the topological position of the units,

or repeatedly use the command Units Set io-Type. The second option can be aborted

by pressing the Done button in the popup window before making a selection.

Chapter 6

Network Creation Tools

SNNS provides �ve tools for easy creation of large, regular networks. All these tools carry

the common name BigNet. They are called by clicking the menu item BigNet in the pull-

down menu, which appears when pressing the GUI button. This invokes the selection

menu of �gure 6.1, where the individual tools can be selected. This chapter gives a short

indroduction to the handling of each of them.

Figure 6.1: The BigNet Menu Window

6.1 BigNet for Feed-Forward Networks

6.1.1 Terminology of the Tool BigNet

BigNet subdivides a net into several planes. The input layer, the output layer and every

hidden layer are called a plane in the notation of BigNet. A plane is a two-dimensional

array of units. Every single unit within a plane can be addressed by its coordinates. The

unit in the upper left corner of every plane has the coordinates (1,1). A group of units

within a plane, ordered in the shape of a square, is called a cluster. The position of a

cluster is determined by the coordinates of its upper left corner and its expansion in the

x direction (width) and y direction (height) (�g. 6.3).

69

70 CHAPTER 6. NETWORK CREATION TOOLS

Figure 6.2: The BigNet window for Feed-Forward Networks

6.1. BIGNET FOR FEED-FORWARD NETWORKS 71

BigNet creates a net in two steps:

1. Edit net: This generates internal data structures in BigNet which describe the net-

work but doesn't generate the network yet. This allows for easy modi�cation of the

network parameters before creation of the net.

The net editor consists of two parts:

(a) The plane editing part for editing planes. The input data is stored in the plane

list.

(b) The link editing part for editing links between planes. The input data is stored

in the link list.

2. Generate net in SNNS: This generates the network from the internal data structures

in BigNet.

Both editor parts are subdivided into an input part (Edit plane, Edit link) and into a

display part for control purposes (Current plane, Current link). The input data of both

editors is stored, as described above, in the plane list and in the link list. After pressing

ENTER , INSERT , or OVERWRITE the input data is added to the corresponding

editor list. In the control part one list element is always visible. The buttons , , ,

and enable moving around in the list. The operations DELETE, INSERT, OVER-

WRITE, CURRENT PLANE TO EDITOR and CURRENT LINK TO EDITOR refer to

the current element. Input data is only entered in the editor list if it is correct, otherwise

nothing happens.

6.1.2 Buttons of BigNet

ENTER : Input data is entered at the end of the plane or the link list.

INSERT : Input data is inserted in the plane list in front of the current plane.

OVERWRITE : The current element is replaced by the input data.

DELETE : The current element is deleted.

PLANE TO EDIT : The data of the current plane is written to the edit plane.

LINK TO EDIT : The data of the current link is written to the edit link.

TYPE : The type (input, hidden, output) of the units of a plane is determined.

POS : The position of a plane is always described relative (left, right, below) to the

position of the previous plane. The upper left corner of the �rst plane is positioned at

the coordinates (1,1) as described in Figure 6.4. BigNet then automatically generates the

coordinates of the unis.

FULL CONNECTION : A fully connected feed forward net is generated. If there are n planes

numbered 1::n then every unit in plane i with i > 0 is connected with every unit in plane

i+ 1 for all 1 � i � n � 1.

SHORTCUT CONNECTION : If there exist n planes 1 : : : n then every unit in plane i with

1 � i < n is connected with every unit in all planes j with i < j � n.

72 CHAPTER 6. NETWORK CREATION TOOLS

Cluster :

 y : 2

 x : 2

 width : 2

 height : 2

Plane :

 x : 5

 y : 5

Unit :

 x : 1

 y : 3

Figure 6.3: Clusters and units in BigNet

Plane 1 Plane 2

right

Plane 3

below

Plane 4

right

Plane 5

left

Plane 6

right

Figure 6.4: Positioning of the planes

CREATE NET : The net described by the two editors is generated by SNNS. The default

name of the net is SNNS NET.net. If a net with this name already exists a warning is

issued before it is replaced.

CANCEL : All internal data of the editors is deleted.

DONE : Exit BigNet and return to the simulator windows.

6.1. BIGNET FOR FEED-FORWARD NETWORKS 73

6.1.3 Plane Editor

Every plane is characterized by the number of units in x and y direction. The unit type

of a plane can be de�ned and changed by TYPE . The position of the planes is determined

relative to the previous plane. The upper left corner of plane no. 1 is always positioned at

the coordinates (1; 1). Pressing POS , one can choose between `left', `right' and `below'.

Figure 6.4 shows the layout of a network with 6 planes which were positioned relative to

their predecessors as indicated starting with plane 1.

Every plane is associated with a plane number. This number is introduced to address

the planes in a clear way. The number is important for the link editor. The user cannot

change this number.

In the current implementation the z coordinate is not used by BIGNET. It has been

implemented for future use with the 3D visualization component.

6.1.4 Link Editor

A link always leads from a source to a target. To generate a fully connected net (connec-

tions from each layer to its succeeding layer, no shortcut connections), it is only su�cient

to press the button FULL CONNECTION after the planes of the net are de�ned. Scrolling

through the link list, one can see that every plane i is connected with the plane i+1. The

plane number shown in the link editor is the same as the plane number given by the plane

editor.

If one wants more complicated links between the planes one can edit them directly. There

are nine di�erent combinations to specify link connectivity patterns:

Links from

8

>

<

>

:

all units of a plane

all units of a cluster

a single unit

9

>

=

>

;

to

8

>

<

>

:

all units of a plane

all units of a cluster

a single unit

9

>

=

>

;

:

Figure 6.5 shows the display for the three possible input combinations with (all units of)

a plane as source. The other combinations are similar. Note that both source plane and

target plane must be speci�ed in all cases, even if source or target consists of a cluster of

units or a single unit. If the input data is inconsistent with the above rules it is rejected

with a warning and not entered into the link list after pressing ENTER or OVERWRITE .

With the Move parameters one can declare how many steps a cluster or a unit will be

moved in x or y direction within a plane after the cluster or the unit is connected with a

target or a source. This facilitates the construction of receptive �elds where all units of

a cluster feed into a single target unit and this connectivity pattern is repeated in both

directions with a displacement of one unit.

The parameter dx (delta-x) de�nes the step width in the x direction and dy (delta-y)

de�nes the step width in the y direction. If there is no entry in dx or dy there is no

movement in this direction. Movements within the source plane and the target plane is

independent from each other. Since this feature is very powerful and versatile it will be

illustrated with some examples.

74 CHAPTER 6. NETWORK CREATION TOOLS

Figure 6.5: possible input combinations with (all units of) a plane as source, between 1)

a plane and a plane, 2) a plane and a cluster, 3) a plane and a unit. Note that the target

plane is speci�ed in all three cases since it is necessary to indicate the target cluster or

target unit.

Example 1: Receptive Fields in Two Dimensions

1,1

3,3

1,1

1,2

1,2

1,3

2,1 2,2

2,1 2,2

3,1

2,3

3,2

Figure 6.6: The net of example 1

There are two planes given (�g. 6.6). To realize the links

source: plane 1 (1,1), (1,2), (2,1) (2,2) �! target: plane 2 (1,1)

source: plane 1 (1,2), (1,3), (2,2) (2,3) �! target: plane 2 (1,2)

source: plane 1 (2,1), (2,2), (3,1) (3,2) �! target: plane 2 (2,1)

source: plane 1 (2,2), (2,3), (3,2) (3,3) �! target: plane 2 (2,2)

6.1. BIGNET FOR FEED-FORWARD NETWORKS 75

between the two planes, the move data shown in �gure 6.7 must be inserted in the link

editor.

Figure 6.7: Example 1

First, the cluster (1,1), (1,2), (2,1) (2,2) is connected with the unit (1,1). After this step

the source cluster and the target unit are moved right one step (this corresponds to dx

= 1 for the source plane and the target plane). The new cluster is now connected with

the new unit. The movement and connection building is repeated until either the source

cluster or the target unit has reached the greatest possible x value. Then the internal

unit pointer moves moves down one unit (this corresponds to dy = 1 for both planes) and

back to the beginning of the planes. The \moving" continues in both directions until the

boundaries of the two planes are reached.

Example 2: Moving in Di�erent Dimensions

This time the net consists of three planes (�g. 6.9). To create the links

source: plane1 (1,1), (1,2), (1,3) �! target: plane 2 (1,1)

source: plane1 (2,1), (2,2), (2,3) �! target: plane 2 (1,2)

source: plane1 (3,1), (3,2), (3,3) �! target: plane 2 (1,3)

source: plane1 (1,1), (2,1), (3,1) �! target: plane 3 (1,1)

source: plane1 (1,2), (2,2), (3,2) �! target: plane 3 (1,2)

source: plane1 (1,3), (2,3), (3,3) �! target: plane 3 (1,3)

between the units one must insert the move data shown in �gure 6.8. Every line of plane

1 is a cluster of width 3 and height 1 and is connected with a unit of plane 2, and every

column of plane 1 is a cluster of width 1 and height 3 and is connected with a unit of plane

3. In this special case one can �ll the empty input �elds of \move" with any data because

a movement in this directions is not possible and therefore these data is neglected.

76 CHAPTER 6. NETWORK CREATION TOOLS

Figure 6.8: Example 2

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1,1 1,3

1,1 1,31,2

1,2

Figure 6.9: The net of example 2

6.1.5 Create Net

After one has described the net one must press CREATE NET to generate the net in SNNS.

The weights of the links are set to the default value 0:5. Therefore one must initialize the

net before one starts learning. The net created has the default name SNNS NET.net.

If a net already exists in SNNS a warning is issued before it is replaced. If the network

generated happens to have two units with more than one connection in the same direction

between them then SNNS sends the error message \Invalid Target".

6.2. BIGNET FOR TIME-DELAY NETWORKS 77

6.2 BigNet for Time-Delay Networks

The BigNet window for Time Delay networks (�gure 6.10) consists of three parts: The

Plane editor where the number, placement, and type of the units are de�ned, the link

editor, where the connectivity between the layer is de�ned, and three control buttons at

the bottom, to create the network, cancel editing, and close the window.

Figure 6.10: The BigNet window for Time Delay Networks

Since the buttons of this window carry mostly the same functionality as in the feed-forward

case, refer to the previous section for a description of their use.

78 CHAPTER 6. NETWORK CREATION TOOLS

6.2.1 Terminology of Time-Delay BigNet

The following naming conventions have been adopted for the BigNet window. Their

meaning may be clari�ed by �gure 6.11.

� Receptive Field: The cluster of units in a layer totally connected to one row of units

in the next layer.

� 1st feature unit: The starting row of the receptive �eld.

� width: The width of the receptive �eld.

� delay length: The number of signi�cant delay steps of the receptive �eld. Must be

the same value for all receptive �elds in this layer.

� No. of feature units: The width of the current layer

� Total delay length: The length of the current layer. Total delay length times the

number of feature units equals the number of units in this layer. Note that the total

delay length must be the same as the delay length plus the total delay length of the

next layer minus one!

� z-coordinates of the plane: gives the placing of the plane in space. This value may

be omitted (default = 0).

width
Receptive Field

Delay
Length

3rd Feature Unit

"One" Feature Unit Number of Feature Units

Couppled Weights

Total Delay
Length

Figure 6.11: The naming conventions

6.2.2 Plane Editor

Just as in BigNet for feed-forward networks, the net is divided into several planes. The

input layer, the output layer and every hidden layer are called a plane in the notation of

BigNet. A plane is a two-dimensional array of units. Every single unit within a plane can

be addressed by its coordinates. The unit in the upper left corner of every plane has the

coordinates (1,1).

See 6.1.3 for a detailed description.

6.2. BIGNET FOR TIME-DELAY NETWORKS 79

6.2.3 Link Editor

In the link panel the connections special to TDNNs can be de�ned. In TDNNs links

always lead from the receptive �eld in a source plane to one or more units of a target

plane. Note, that a receptive �eld has to be speci�ed only once for each plane and is

automatically applied to all possible delay steps in that plane. �gure 6.12 gives an example

of a receptive �eld speci�cation and the network created thereby.

Figure 6.12: An example TDNN construction and the resulting network

Hidden LayerInput Layer

The first feature unit

for hidden unit 1

The first feature unit

for hidden unit 2

Figure 6.13: Two receptive �elds in one layer

80 CHAPTER 6. NETWORK CREATION TOOLS

It is possible to specify seperate receptive �elds for di�erent feature units. With only one

receptive �eld for all feature units, a "1" has to be speci�ed in the input window for "1st

feature unit:". For a second receptive �eld, the �rst feature unit should be the width of

the �rst receptive �eld plus one. Of course, for all number of receptive �elds, the sum

of their width has to equal the number of feature units! An example network with two

receptive �elds is depicted in �gure 6.13

6.3 BigNet for ART-Networks

The creation of the ART networks is based on just a few parameters. Although the network

topology for these models is rather complex, only four parameters for ART1 and ART2,

and eight parameters for ARTMAP, have to be speci�ed.

If you have selected the ART 1 , ART 2 or the ARTMAP button in the BigNet menu, one

of the windows shown in �gure 6.14 appears on the screen.

Figure 6.14: The BigNet windows for the ART models

The four parameters you have to specify for ART1 and ART2 are simple to choose. First

you have to tell BigNet the number of units (N) the F

1

layer consists of. Since the F

0

layer has the same number of units, BigNet takes only the value for F

1

.

Next the way how these N units to be displayed has to be speci�ed. For this purpose

enter the number of rows. An example for ART1 is shown in �gure 6.15.

The same procedure is to be done for the F

2

layer. Again you have to specify the number

of units M for the recognition part

1

of the F

2

layer and the number of rows.

Pressing the CREATE NET button will generate a network with the speci�ed parameters.

If a network exists when pressing CREATE NET you will be prompted to assure that

1

The F

2

layer consists of three internal layers. See chapter 8.11.

6.3. BIGNET FOR ART-NETWORKS 81

Figure 6.15: Example for the generation of an ART1 network. First the BigNet (ART1)

panel is shown with the speci�ed parameters. Next you see the created net as you can see

it when using an SNNS display.

you really want to destroy the current network. A message tells you if the generation

terminated successfully. Finally press the DONE button to close the BigNet panel.

For ARTMAP things are slightly di�erent. Since an ARTMAP network exists of two

ART1 subnets (ART

a

and ART

b

), for both of them the parameters described above have

to be speci�ed. This is the reason, why BigNet (ARTMAP) takes eight instead of four

parameters. For the MAP �eld the number of units and the number of rows is taken from

the repective values for the F

b

2

layer.

Chapter 7

A Network Analyzing Tool

Very often the user of a neural network asks what properties an input pattern must have in

order to let the net generate a speci�c output. To help answer this question, the Inversion

algorithm developed by J. Kindermann and A. Linden ([KL90]) was implemented in SNNS.

7.1 Inversion Algorithm

The inversion of a neural net tries to �nd an input pattern that generates a speci�c output

pattern with the existing connections. To �nd this input, the deviation of each output

from the desired output is computed as error �. This error value is used to approach

the target input in input space step by step. Direction and length of this movement is

computed by the inversion algorithm.

The most commonly used error value is the Least Mean Square Error. E

LMS

is de�ned as

E

LMS

=

n

X

p=1

[T

p

� f(

X

i

w

ij

o

pi

)]

2

The goal of the algorithm therefore has to be to minimize E

LMS

.

Since the error signal �

pi

can be computed as

�

pi

= o

pi

(1� o

pi

)

X

k2Succ(i)

�

pk

w

ik

and for the adaption value of the unit activation follows

4net

pi

= ��

pi

resp. net

pi

= net

pi

+ ��

pi

In this implementation, a uniform pattern is applied to the input units in the �rst step,

whose activation level depends upon the variable input pattern. This pattern is propa-

gated through the net and generates the initial output O

(0)

. The di�erence between this

82

7.2. INVERSION DISPLAY 83

output vector and the target output vector is propagated backwards through the net as

error signals �

i

(0) . This is analogous to the propagation of error signals in the backprop-

agation training, with the di�erence that no weights are adjusted here. When the error

signals reach the input layer, they represent a gradient in input space, which gives the

direction for the gradient descent. Thereby, the new input vector can be computed as

I

(1)

= I

(0)

+ � � �

i

(0)

where � is the step size in input space, which is set by the variable eta.

This procedure is now repeated with the new input vector until the distance between the

generated output vector and the desired output vector falls below the prede�ned limit of

delta max, when the algorithm is halted.

For a more detailed description of the algorithm and its implementation see [Mam92].

7.2 Inversion Display

The inversion algorithm is called by selecting the menu item INVERSION in the pull{down

menu hidden behind the GUI button of the SNNS Info panel.

Picture 7.1 shows an example of the generated display.

Figure 7.1: The Inversion Display

The display consists of two regions. The larger, lower part contains a sketch of the input

and output units of the network, while the upper line holds a series of buttons. Their

respective functions are:

1. DONE : Quits the inversion algorithm and closes the display.

84 CHAPTER 7. A NETWORK ANALYZING TOOL

2. STEP : Starts / Continues the algorithm. The program starts iterating by slowly

changing the input pattern until either the STOP button is pressed, or the generated

output pattern approximates the desired output pattern su�ciently well. Su�ciently

well means that all output units have an activation, which di�ers from the expected

activation of that unit by at most a value of �

max

. This error limit can be set in the

setup panel (see below). During the iteration run, the program prints status reports

to stdout.

cycle 50 inversion error 0.499689 still 1 error unit(s)

cycle 100 inversion error 0.499682 still 1 error unit(s)

cycle 150 inversion error 0.499663 still 1 error unit(s)

cycle 200 inversion error 0.499592 still 1 error unit(s)

cycle 250 inversion error 0.499044 still 1 error unit(s)

cycle 269 inversion error 0.000000 0 error units left

where cycle is the number of the current iteration, inversion error is the sum of the

squared error of the output units for the current input pattern, and error units are

all units that have an activation that di�ers more than the value of �

max

from the

target activation.

3. STOP : Interrupts the iteration. The status of the network remains unchanged.

The interrupt causes the current activations of the units to be displayed on the

screen. A click to the STEP button continues the algorithm at the last position.

Alternatively the algorithm can be reset before the restart by a click to the NEW

button, or continued with other parameters after a change in the setup. Since there

is no automatic recognition of inde�nite loops in the implementation, the STOP

button is also necessary when the algorithm obviously does not converge.

4. NEW Resets the network to a de�ned initial status. All variables are assigned the

values in the setup panel. The iteration counter is set to zero.

5. SETUP : Opens a popup window to set all variables associated with the inversion.

These variables are:

eta The step size for changing the activations. It should range

from 1.0 to 10.0. Corresponds to the learning factor in

backpropagation.

delta max The maximum deviation of the activation of an output unit.

Units with higher deviation are called error units.

A typical value of delta max is 0.1.

Input pattern Initial activation of all input units.

2nd approx ratio Inuence of the second approximation. Good values range

from 0.2 to 0.8.

A short description of all these variables can be found in an associated help window,

which pops up on pressing HELP in the setup window.

The variable second approximation can be understood as follows: Since the goal is

to get a desired output, the �rst approximation is to get the network output as close

as possible to the target output. There may be several input patterns generating

7.3. EXAMPLE SESSION 85

the same output. To reduce the number of possible input patterns, the second

approximation speci�es a pattern the computed input pattern should approximate

as well as possible. For a setting of 1.0 for the variable Input pattern the algorithm

tries to keep as many input units as possible on a high activation, while a value of

0.0 increases the number of inactive input units. The variable 2nd approx ratio

de�nes then the importance of this input approximation.

It should be mentioned, however, that the algorithm is very instable. An inversion

run may converge, while another with only slightly changed variable settings may

run inde�nitely. The user therefore may have to try several variable combinations

before a satisfying result is achieved. In general, the better the net was previously

trained, the more likely is a positive inversion result.

6. HELP : Opens a window with a short help on handling the inversion display.

The network is displayed in the lower part of the window according to the settings of the

last opened 2D{display window. Size, color, and orientation of the units are read from

that display pointer.

7.3 Example Session

The inversion display may be called before or after the network has been trained. A pattern

�le for the network has to be loaded prior to calling the inversion. A target output of the

network is de�ned by selecting one or more units in the 2D{display by clicking the middle

mouse button. After setting the variables in the setup window, the inversion run is started

by clicking the start button. At regular intervals, the inversion gives a status report on

the shell window, where the progress of the algorithm can be observed. When there are no

more error units, the program terminates and the calculated input pattern is displayed.

If the algorithm does not converge, the run can be interrupted with the stop button and

the variables may be changed. The calculated pattern can be tested for correctness by

selecting all input units in the 2D{display and then deselecting them immediately again.

This copies the activation of the units to the display. It can then be de�ned and tested

with the usual buttons in the remote panel. The user is advised to delete the generated

pattern, since its use in subsequent learning cycles alters the behavior of the network which

is generally not desirable.

Figure 7.2 shows an example of a generated input pattern. Here the minimum active units

for recognition of the letter 'V' are given. Picture 7.3 shows the corresponding original

pattern.

86 CHAPTER 7. A NETWORK ANALYZING TOOL

Figure 7.2: An Example of an Inversion Display

Figure 7.3: The original pattern for the letter V

Chapter 8

Neural Network Models and

Functions

The following chapter introduces the models and learning functions implemented in SNNS.

A strong emphasis is placed on the models that might not be commonly known. They can

not, however, be explained exhaustively here. We refer interested users to the literature.

8.1 Backpropagation Networks

8.1.1 Vanilla Backpropagation

The standard backpropagation learning algorithm introduced by [RM86] and described

already in section 3.3 is implemented in SNNS. It is the most common learning algorithm.

Its de�nition reads as follows:

�w

ij

= � �

j

o

i

�

j

=

(

f

0

j

(net

j

)(t

j

� o

j

) if unit j is a output-unit

f

0

j

(net

j

)

P

k

�

k

w

jk

if unit j is a hidden-unit

This algorithm is also called online backpropagation because it updates the weights after

every training pattern.

8.1.2 Enhanced Backpropagation

An enhanced version of backpropagation uses a momentum term and at spot elimination.

It is listed among the SNNS learning functions as BackpropMomentum.

With at spot elimination the weights are updated according to the above given rule as

usual. Then it is tested whether the error decreased due to that change. If so, the change

87

88 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

is performed again. This is reiterated until the error starts to increase. Now the new

gradient is computed and learning continues.

The momentum term introduces the old weight change as a parameter for the computation

of the new weight change. This avoids oscillation problems common with the regular

backprop algorithm when the error surface has a very narrow minimum area. The new

weight change is computed by

�w

ij

(t+ 1) = � � �

j

� o

i

+ ��w

ij

(t)

� is a constant specifying the inuence of the momentum.

The e�ect of these enhancements is that at spots of the error surface are traversed

relatively fast with few big steps, while the step size is decreased as the surface gets

rougher. This adaption of the step size increases learning speed signi�cantly.

Note that the old weight change is lost every time the parameters are modi�ed, new

patterns are loaded, or the network is modi�ed.

8.1.3 Batch Backpropagation

Batch backpropagation has a similar formula as vanilla backpropagation. The di�erence

lies in the time when the update of the links takes place. While in vanilla backpropagation

an update step is performed after each single pattern, in batch backpropagation all weight

changes are summed over a full presentation of all training patterns (one epoch). Only

then, an update with the accumulated weight changes is performed. This update behavior

is especially well suited for training pattern parallel implementations where communication

costs are critical.

8.2 Quickprop

One method to speed up the learning is to use information about the curvature of the

error surface. This requires the computation of the second order derivatives of the error

function. Quickprop assumes the error surface to be locally quadratic and attempts to

jump in one step from the current position directly into the minimum of the parabola.

Quickprop [Fah88] computes the derivatives in the direction of each weight. After com-

puting the �rst gradient with regular backpropagation, a direct step to the error minimum

is attempted by

�(t+ 1)w

ij

=

S(t+ 1)

S(t)� S(t+ 1)

�(t)w

ij

where:

w

ij

weight between units i and j

�(t+ 1) actual weight change

S(t+ 1) partial derivative of the error function by w

ij

S(t) the last partial derivative

8.3. RPROP 89

8.3 RPROP

RPROP stands for 'resilient propagation' and is a new adaptive learning algorithm that

considers the local topology of the error function to change its behavior ([MR92]). Its

weight update is based on the so-called 'Manhattan' learning rule:

4w

(t)

ij

=

8

>

>

<

>

>

:

�4 ; if

@E

@w

ij

(t)

> 0

+4 ; if

@E

@w

ij

(t)

< 0

0 ; else

where 4, the 'update value', is a problem-dependent constant.

Due to its simplicity, this is a very coarse way to adjust the weights, and so it is not

surprising that this method does not work satisfactorily with di�cult problems in which

it is hard to �nd an acceptable solution in weight space (e.g. strong nonlinear mappings).

The basic idea for the improvement realized by the RPROP algorithm was to obtain more

information about the topology of the error function so that the weight update can be

done more appropriately. For each weight we introduce its own 'personal' update value

4

ij

, which evolves during the learning process according to its local view of the error

function E. So we get a second learning rule for the update values themselves:

4

(t)

ij

=

8

>

>

<

>

>

:

�

+

� 4

(t�1)

ij

; if

@E

@w

ij

(t�1)

�

@E

@w

ij

(t)

> 0

�

�

� 4

(t�1)

ij

; if

@E

@w

ij

(t�1)

�

@E

@w

ij

(t)

< 0

4

(t�1)

ij

; else

where 0 < �

�

< 1 < �

+

.

Note that the update value is not inuenced by the magnitude of the derivative, but

only by the sign of two succeeding derivatives. Every time the partial derivative of the

corresponding weight w

ij

changes its sign (which indicates that the last update was too big

and the algorithm has jumped over a local minimum) the update value 4

ij

is decreased

by the factor �

�

. If the derivative retains its sign, the update value is slightly increased

in order to accelerate convergence in shallow regions.

Similar adaptation strategies can also be found in former approaches. The essential dif-

ference, which turned out to make the Rprop algorithm very powerful and e�cient, is the

fact that the size of the partial derivative no longer inuences the size of the weight step

actually taken. The size of the weight step is solely determined by the sequence of the

sign of the derivative, which has proven to be a reliable hint about the topology of the

local error function (by providing some sort of rough second order information).

The update rule for the weights is the same as above with one exception: if the partial

derivative changes sign, the previous update step, leading to a jump over the minimum,

is reverted:

90 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

4w

(t)

ij

= �4w

(t�1)

ij

, if

@E

@w

ij

(t�1)

�

@E

@w

ij

(t)

< 0

Due to that 'backtracking' weight step, the derivative is supposed to change its sign once

again in the following step. In order to avoid a double punishment of the update value,

there should be no adaptation of the update value in the succeeding step. In practice this

can be done by setting

@E

@w

ij

(t�1)

:= 0 in the 4

ij

adaptation-rule above.

The update values and the weights are changed every time the whole pattern set has been

presented to the network (batch learning).

In multiple experiments we found that choosing �

+

= 1:2 and �

�

= 0:5 always gave the

best results. So both parameters are permanently set to the above values and are not

changeable by the user.

At the beginning, all update values 4

ij

are set to an initial value 4

0

. The choice of

this parameter is not critical, for it is adapted as learning proceeds (default value is 0.1).

The second parameter that can be chosen is the upper limit for the update values, 4

max

.

The default value of 4

max

is 50:0, and this should work well for most of the problems.

However, in very di�cult tasks it can be useful to restrict the upper bound of the update

values in order to avoid unreasonably large weight steps (e.g. 4

max

:= 0:1).

As shown in a variety of tests, there is often no need to change the default values of the

two parameters 4

0

and 4

max

at all. [MR92], [MR93]. This is a very favorable property

of RPROP, leading to a very robust and easy to use but yet very fast learning algorithm.

8.4 Backpercolation

Backpercolation 1 (Perc1) is a learning algorithm for feedforward networks. Here the

weights are not changed according to the error of the output layer as in backpropagation,

but according to a unit error that is computed seperately for each unit. This e�ectively

reduces the amount of training cycles needed.

The algorithm consists of �ve steps:

1. A pattern is propagated through the network and the global error is computed.

2. The gradient � is computed and propagated back through the hidden layers as in

backpropagation.

3. The error � in the activation of each hidden neuron is computed. This error speci�es

the value by which the output of this neuron has to change in order to minimize the

global error Err.

4. All weight parameters are changed according to �.

5. If necessary, an adaptation of the error magni�ng parameter � is performed once

every learning epoch.

8.5. COUNTERPROPAGATION 91

The third step is divided into two phases: First each neuron receives a message ��,

specifying the proposed change in the activation of the neuron (message creation - MCR).

Then each neuron combines the incoming messages to an optimal compromise, the internal

error � of the neuron (message optimization - MOP). The MCR phase is performed in

forward direction (from input to output), the MOP phase backwards.

The internal error �

k

of the output units is de�ned as �

k

= �(d

k

� �

k

), where � is the

global error magni�cation parameter.

Unlike backpropagation Perc1 does not have a learning parameter. Instead it has an error

magni�cation parameter �. This parameter may be adapted after each epoch, if the total

mean error of the network falls below the threshold value �.

When using backpercolation with a network in SNNS the initialization function Random -

Weights Perc and the activation function Act TanH Xdiv2 should be used.

8.5 Counterpropagation

8.5.1 Fundamentals

Counterpropagation was originally proposed as a pattern-lookup system that takes ad-

vantage of the parallel architecture of neural networks. Counterpropagation is useful in

pattern mapping and pattern completion applications and can also serve as a sort of

bidirectional associative memory.

When presented with a pattern, the network classi�es that pattern by using a learned

reference vector. The hidden units play a key role in this process, since the hidden layer

performs a competitive classi�cation to group the patterns. Counterpropagation works

best on tightly clustered patterns in distinct groups.

Two types of layers are used: The hidden layer is a Kohonen layer with competitive

units that do unsupervised learning; the output layer is a Grossberg layer, which is fully

connected with the hidden layer and is not competitive.

When trained, the network works as follows. After presentation of a pattern in the input

layer, the units in the hidden layer sum their inputs according to

net

j

=

X

i

w

ij

o

i

and then compete to respond to that input pattern. The unit with the highest net input

wins and its activation is set to 1 while all others are set to 0. After the competition, the

output layer does a weighted sum on the outputs of the hidden layer.

a

k

= net

k

=

X

j

w

jk

o

j

Let c be the index of the winning hidden layer neuron. Since o

c

is the only nonzero element

in the sum, which in turn is equal to one, this can be reduced to

a

k

= w

ck

92 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

Thus the winning hidden unit activates a pattern in the output layer.

During training, the weights are adapted as follows:

1. A winner of the competition is chosen in response to an input pattern.

2. The weights between the input layer and the winner are adjusted according to

w

ic

(t+ 1) = w

ic

(t) + �(o

i

� w

ic

(t))

All the other weights remain unchanged.

3. The output of the network is computed and compared to the target pattern.

4. The weights between the winner and the output layer are updated according to

w

ck

(t+ 1) = w

ck

(t) + �(o

k

� w

ck

(t))

All the other weights remain unchanged.

8.5.2 Counterpropagation Implementation in SNNS

To use counterpropagation in SNNS the following functions and variables have to be

selected. The initialization function CPN Weights, the update function CPN Order, and

the learning function Counterpropagation. The activation function of the units may be

set to any of the sigmoidal functions available in SNNS.

8.6 Dynamic Learning Vector Quantization (DLVQ)

8.6.1 DLVQ Fundamentals

The idea of this algorithm is to �nd a natural grouping in a set of data ([SK92], [DH73].

Every data vector is associated with a point in a d-dimensional data space. The hope is

that the vectors ~x of the same class form a cloud or a cluster in data space. The algorithm

presupposes that the vectors ~x belonging to the same class w

i

are distributed normally

with a mean vector ~�

i

. To classify a feature vector ~x measure the Euclidian distance

jj~��~xjj

2

from ~x to all other mean vectors ~� and assign ~x to the class of the nearest mean.

But what happens if a pattern ~x

A

of class w

A

is assigned to a wrong class w

B

? Then for

this wrong classi�ed pattern the two mean vectors ~�

A

and ~�

B

are moved or trained in the

following way:

� The reference vector ~�

A

which the wrong classi�ed pattern belongs to, and which is

the nearest neighbor to this pattern, is moved a little bit towards this pattern.

� The mean vector ~�

B

, to which a pattern of class w

A

is assigned wrongly, is moved

away from it.

The vectors are moved using the rule:

w

ij

= w

ij

+ �(o

i

� w

ij

):

8.6. DYNAMIC LEARNING VECTOR QUANTIZATION (DLVQ) 93

where w

ij

is the weight

1

between the output o

i

of a input unit i and a output unit j. �

is the learning parameter. By choosing it less or bigger than zero, the direction a vector

moves can be inuenced.

The DLVQ algorithm works in the following way:

1. Load the training data, norm them and calculate for every class the mean vector �.

Initialize the net with these vectors. This means: Generate a unit for every class

and initialize its weights with the corresponding values.

2. Now try to associate every pattern out of the training set with a reference vector. If

a trainings vector ~x of a class w

A

is assigned to a class w

B

then do the following:

(a) Move the vector ~�

A

which is nearest to ~x

A

in its direction.

(b) Move the mean vector ~�

B

, to which ~x

A

is falsely assigned to away from it.

Repeat this procedure until the number of correctly classi�ed vectors does not in-

crease any more.

3. Now calculate from the vectors of a class w

A

, which are associated with a wrong

class w

B

a new prototype vector �

A

. Choose for every class one of the new mean

vectors and add it to the net. Go back to step 2.

8.6.2 DLVQ in SNNS

To start the learning rule DLVQ the learning function DLVQ, the update function DLVQ -

Update and the init function DLVQ Weights have to be selected in the corresponding

menus. The init functions of DLVQ di�er a little from the normal function: if a DLVQ net

is initialized, all hidden units are deleted.

As with the learning rules CC and RCC the text �eld CYCLE in the remote panel does not

specify the number of learning cycles. This �eld is used to specify the maximal number of

class units to be generated for each class during learning. The number of learning cycles

is entered as third parameter in the remote panel (see below).

1. �

+

: learning rate, speci�es the step width of the mean vector ~�

A

, which is nearest

to a pattern ~x

A

, towards this pattern. Remember that ~�

A

is moved only, if ~x

A

is not

assigned to the correct class w

A

. A typical value is 0.03.

2. �

�

: learning rate, speci�es the step width of a mean vector ~�

B

, to which a pattern

of class w

A

is falsely assigned to, away from this pattern. A typical value is 0.03.

Best results can be achieved, if the condition �

+

= �

�

is satis�ed.

3. Number of cycles you want to train the net before additive mean vectors are calcu-

lated.

If the topologiy of a net �ts to the DLVQ architecture SNNS will order the units and

layers indepentently in the following way: From left to right an input layer, a hidden layer

and an output layer. The hidden layer itself is ordered by classes.

1

Every mean vector ~� of a class is represented by a class unit. The elements of these vectors are stored

in the weights between class unit and the input units.

94 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

input layer

output unit

class 0 class 1 class 2 class n

hidden layer

Figure 8.1: Topology of a net which was trained with DLVQ.

The output layer must consist of only one unit. At the start of the learning phase it

does not matter whether the output layer and the input layer are connected. If hidden

units exist, they are fully connected with the input layer. The links between these layers

contain the values of the the mean vectors. The output layer and the hidden layer are

fully connected. All these links have the value 1 assigned.

The output pattern contains the information which class the input pattern belongs to.

The lowest class must have the name 0. If there are n classes, the n-th class has the name

n� 1. If these conditions are violated an error occurs. Figure 8.1 shows the topology of a

net. In the bias of every class unit its class name is stored. It can be retrieved by clicking

on a class unit with right mouse buttom.

8.6.3 Remarks

This algorithm was developed in the course of a masters thesis without knowledge of the

original LVQ learning rules ([KKLT92]). Only later we found out that we had developed

a new LVQ algorithm: It starts with the smallest possible number of hidden layers and

adds new hidden units only when needed. Since the algorithm generates the hidden layer

dynamically during the learning phase, it was called dynamic LVQ (DLVQ).

It is obvious that the algorithm works only if the patterns belonging to the same class

have some similarities. Therefore the algorithm �ts best to classi�cation problems like

recognition of patterns, digits and so on. With this algorithm I succeeded in learning

10000 digits with a resolution of 16�16 pixels. Overall the algorithm generated 49 hidden

units during learning.

8.7. BACKPROPAGATION THROUGH TIME (BPTT) 95

8.7 Backpropagation Through Time (BPTT)

This is a learning algorithm for recurrent networks that are updated in discrete time steps

(non-�xpoint networks). These networks may contain any number of feedback loops in

their connectivity graph. The only restriction in this implementation is that there may

be no connections between input units

2

. The gradients of the weights in the recurrent

network are approximated using an feedforward network with a �xed number of layers.

Each layer t contains all activations a

i

(t) of the recurrent network at time step t. The

highest layer contains the most recent activations at time t = 0. These activations are

calculated synchronously, using only the activations at t = 1 in the layer below. The

weight matrices between successive layers are all identical. To calculate an exact gradient

for an input pattern sequence of length T , the feedforward network needs T + 1 layers

if an output pattern should be generated after the last pattern of the input sequence.

This transformation of a recurrent network into a equivalent feedforward network was

�rst described in [MP69], p. 145 and the application of backpropagation learning to these

networks was introduced in [RHW86].

To avoid deep networks for long sequences, it is possible to use only a �xed number of layers

to store the activations back in time. This method of truncated backpropagation through

time is described in [Zip90] and is used here. An improved feature in this implementation is

the combination with the quickprop algorithm by [Fah88] for weight adaption. The number

of additional copies of network activations is controlled by the parameter backstep. Since

the setting of backstep virtually generates a hierarchical network with backstep+1 layers

and error information during backpropagation is diminished very rapidly in deep networks,

the number of additional activation copies is limited by backstep � 10.

There are three versions of backpropagation through time avaliable:

BPTT: Backpropagation through time with online-update.

The gradient for each weight is summed over backstep copies between successive

layers and the weights are adapted using the formula for backpropagation with mo-

mentum term after each pattern. The momentum term uses the weight change

during the previous pattern. Using small learning rates eta, BPTT is especially use-

ful to start adaption with a large number of patterns since the weights are updated

much more frequently than in batch-update.

BBPTT: Batch backpropagation through time.

The gradient for each weight is calculated for each pattern as in BPTT and then

averaged over the whole training set. The momentum term uses update information

closer to the true gradient than in BPTT.

QPTT: Quickprop through time.

The gradient in quickprop through time is calculated as in BBPTT, but the weights

are adapted using the substantially more e�cient quickprop-update rule.

A recurrent network has to start processing a sequence of patterns with de�ned activations.

All activities in the network may be set to zero by applying an input pattern containing

2

This case may be transformed into a network with an additional hidden unit for each input unit and

a single connection with unity weight from each input unit to its corresponding hidden unit.

96 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

only zero values. If such all-zero patterns are part of normal input patterns, an extra input

unit has to be added for reset control. If this reset unit is set to 1, the network is in the

free running mode. If the reset unit and all normal input units are set to 0, all activations

in the network are set to 0 and all stored activations are cleared as well.

The processing of an input pattern I(t) with a set of non-input activations a

i

(t) is per-

formed as follows:

1. The input pattern I(t) is copied to the input units to become a subset of the existing

unit activations a

i

(t) of the whole net.

2. If I(t) contains only zero activations, all activations a

i

(t+1) and all stored activations

a

i

(t); a

i

(t� 1); : : : ; a

i

(t� backstep) are set to 0:0.

3. All activations a

i

(t + 1) are calculated synchronously using the activation function

and activation values a

i

(t).

4. During learning, an output pattern O(t) is always compared with the output subset

of the new activations a

i

(t+ 1).

Therefore there is exactly one synchronous update step between an input and an output

pattern with the same pattern number.

If an input pattern has to be processed with more than one network update, there has

to be a delay between corresponding input and output patterns. If an output pattern o

P

is the n-th pattern after an input pattern i

P

, the input pattern has been processed in

n+ 1 update steps by the network. These n+ 1 steps may correspond to n hidden layers

processing the pattern or a recurrent processing path through the network with n + 1

steps. Because of this pipelined processing of a pattern sequence, the number of hidden

layers that may develop during training in a fully recurrent network is inuenced by the

delay between corresponding input and output patterns. If the network has a de�ned

hierachical topology without shortcut connections between n di�erent hidden layers, an

output pattern should be the n-th pattern after its corresponding input pattern in the

pattern �le.

An example illustating this relation is given with the delayed XOR network in the net-

work �le xor-rec.net and the pattern �les xor-rec1.pat and xor-rec2.pat. With the

patterns xor-rec1.pat, the task is to compute the XOR function of the previous input

pattern. In xor-rec2.pat, there is a delay of 2 patterns for the result of the XOR of

the input pattern. Using a �xed network topology with shortcut connections, the BPTT

learning algorithm develops solutions with a di�erent number of processing steps using

the shortcut connections from the �rst hidden layer to the output layer to solve the task

in xor-rec1.pat. To map the patterns in xor-rec2.pat the result is �rst calculated in

the second hidden layer and copied from there to the output layer during the next update

step

3

.

3

If only an upper bound n for the number of processing steps is known, the input patterns may consist

of windows containing the current input pattern together with a sequence of the previous n � 1 input

patterns. The network then develops a focus to the sequence element in the input window corresponding

to the best number of processing steps.

8.8. THE CASCADE CORRELATION ALGORITHMS 97

The update function BPTT-Order performs the synchronous update of the network and

detects reset patterns. If a network is tested using the TEST button in the remote panel,

the internal activations and the output activation of the output units are �rst overwritten

with the values in the target pattern, depending on the setting of the button SHOW .

To provide correct activations on feedback connections leading out of the output units

in the following network update, all output activations are copied to the units initial

activation values i act after each network update and are copied back from i act to out

before each update. The non-input activation values may therefore be inuenced before a

network update by changing the initial activation values i act.

If the network has to be reset by stepping over a reset pattern with the TEST button,

keep in mind that after clicking TEST , the pattern number is increased �rst, the new

input pattern is copied into the input layer second, and then the update function is called.

So to reset the network, the current pattern must be set to the pattern directly preceeding

the reset pattern.

8.8 The Cascade Correlation Algorithms

Two cascade correlation algorithms have been implemented in SNNS, Cascade-Correlation

and recurrent Cascade-Correlation. Both learning algorithms have been developed by

Scott Fahlman ([FL91], [HF91], [Fah91]). Strictly speaking the cascade architecture rep-

resents a kind of meta algorithm, in which usual learning algorithms like Backprop, Quick-

prop or Rprop are embedded. Cascade-Correlation is characterized as a constructive learn-

ing rule. It starts with a minimal network, consisting only of an input and an output layer.

Minimizing the overall error of a net, it adds step by step new hidden units to the hidden

layer.

Cascade-Correlation is a supervised learning architecture which builds a near minimal

multi-layer network topology. The two advantages of this architecture are that there is no

need for a user to worry about the topology of the network, and that Cascade-Correlation

learns much faster than the usual learning algorihgtms.

8.8.1 Cascade-Correlation (CC)

8.8.1.1 The Algorithm

Cascade-Correlation (CC) combines two ideas: The �rst is the cascade architecture, in

which hidden units are added only one at a time and do not change after they have been

added. The second is the learning algorithm, which creates and installs the new hidden

units. For each new hidden unit, the algorithm tries to maximize the magnitude of the

correlation between the new unit's output and the residual error signal of the net.

The algorithm is realized in the following way:

1. CC starts with a minimal network consisting only of an input and an output layer.

Both layers are fully connected.

98 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

2. Train all the connections ending at a output unit with a usual learning algorithm

until the error of the net does not shrink any more.

3. Generate the so called candidate units. Every candidate unit is connected with all

input units and with all existing hidden units. Between the pool of candidate units

and the output units there are no weights.

4. Try to maximize the correlation between the activation of the candidate units and

the residual error of the net by training all the links leeding to a candidate unit.

Learning takes place with an ordinary learning algorithm. The training is stopped,

when the correlation scores does not improve any more.

5. Choose the candidate unit with the maximum correlation, freeze its incoming weights

and add it to the net. To change the candidate unit into a hidden unit, generate

links between the selected unit and all the output units. Since the weights leeding

to the new hidden unit are froozen, a new permanent feature detector is obtained.

Loop back to step 2.

This algorithm is repeated until the overall error of the net falls below a given value.

Figure 8.2 shows a net after 3 hidden units have been added.

Outputs

Output Units

Hidden Unit 3

Hidden Unit 2

Hidden Unit 1

1

Inputs

Bias

Figure 8.2: A neural net trained with cascade-correlation after 3 hidden units have been

added. The vertical lines add all incoming activations. Connections with white boxes are

frozen. The black connections are trained repeatedly.

8.8.1.2 Mathematical Background

The training of the output units tries to minimize the sum-squared error E:

8.8. THE CASCADE CORRELATION ALGORITHMS 99

E =

X

p

1

2

X

o

(y

po

� t

po

)

2

where t

po

is the desired and y

po

is the observed output of the output unit o for a pattern

p. The error E is minimized by gradient decent using

e

po

= (y

po

� t

po

)f

0

p

(net

o

)

@E

@w

io

=

X

p

e

po

I

ip

;

where f

0

p

is the derivative of an activation function of a output unit o and I

ip

is the value of

an input unit or a hidden unit i for a pattern p. w

io

denominates the connection between

an input or hidden unit i and an output unit o.

After the training phase the candidate units are adapted, so that the correlation C between

the value y

po

of a candidate unit and the residual error e

po

of an output unit becomes

maximal. The correlation is given by Fahlman with:

C =

X

o

�

�

�

�

�

X

p

(y

po

� �y

o

)(e

po

� �e

o

)

�

�

�

�

�

=

X

o

�

�

�

�

�

X

p

y

po

e

po

� �e

o

X

p

y

po

�

�

�

�

�

=

X

o

�

�

�

�

�

X

p

y

po

(e

po

� �e

o

)

�

�

�

�

�

;

where �y

o

is the average activation of a candidate unit and �e

o

is the average error of an

output unit over all patterns p. The maximation of C proceeds by gradient ascent using

�

p

=

X

o

�

o

(e

po

� �e

j

)f

0

p

@C

@w

i

=

X

p

�

p

I

pi

;

where �

o

is the sign of the correlation between the candidate unit's output and the residual

error at output o.

100 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

8.8.2 Recurrent Cascade-Correlation (RCC)

8.8.2.1 The Algorithm

Recurrent Cascade-Correlation (RCC) is a recurrent version of Cascade-Correlation and

can be used to train recurrent neural nets ([Elm89]).

Recurrent nets have some features that distinguish them from normal neural networks.

For example they can be used to represent time implicitly by its e�ects on processing

rather than explicitly. One of the most commonly known architectures of recurrent neural

nets is the Elman model, which assumes that the network operates in discrete time-steps.

The outputs of the networks hidden units at a time t are fed back for use as additional

network inputs at time t + 1. To store the output of the hidden units Elman introduced

context units, which represent a kind of short-term memory (see �g. 8.3). To integrate the

Elman model into the cascade architecture some changes are necessery: The hidden units'

values are no longer fed back to all other hidden units. Instead every hidden unit has only

one self recurrent link as shown in �gure 8.4. This self recurrent link is trained along with

the candidate unit's other input weights to maximize the correlation. When the candidate

unit is added to the active network as hidden unit, the recurrent link is frozen along with

all other links.

recurrent

hidden units

input units context units

links

output units

Figure 8.3: The Elman architecture of a

recurrent neural net

output units

input units

hidden unit
recurrent

link

Figure 8.4: RCC architecture of a recur-

rent neural net.

8.8.2.2 Mathematical Background

The output of a recurrent unit r is given by:

V (t) = f

act

X

i

I

i

(t)w

ir

+ V (t� 1)w

s

!

;

8.8. THE CASCADE CORRELATION ALGORITHMS 101

where:

f

act

: any activation function

w

ir

: the weight of the connection between the input unit i and the unit r

w

s

: the value of the self recurrent connection.

I

i

: output of the input unit i

The derivatives of V (t) with respect to w

ir

and w

s

are computed as follows:

@V

@w

ir

= f

0

act

(t)(I

i

(t) + w

s

@V (t�1)

@w

ir

)

and

@V

@w

s

= f

0

act

(t)(V (t � 1) + w

s

@V (t�1)

@w

s

):

At t = 0, it is assumed that the unit's previous value and previous derivatives are all zero.

8.8.3 Using the Cascade Algorithms in SNNS

Networks that make use of the cascade correlation architecture can be created in SNNS

like all other network types. The control of the training phase, however, is moved from

the remote panel to the special cascade window described below. The remote panel is still

used to specify the learning parameters, while the text �eld CYCLE does not specify as

usual the number of learning cycles. This �eld is used here to specify the maximal number

of hidden units to be generated during the learning phase. The number of learning cycles

is entered in the cascade window. The learning parameters for the embedded learning

functions Quickprop, Rprop and Backprop are described in chapter 4.3.

If the topology of a net is speci�ed correctly, the program will automatically order the

units and layers in the following way: From left to right an input layer, a hidden layer, an

output layer and a candidate layer

4

. The hidden layer is generated with always 5 units

having the same x-coordinate (i.e. above each other on the display).

The cascade correlation control panel, the cascade window (see �g. 8.5, is opened by

clicking the menue item Cascade in the pull-down menu, which appears when pressing

the XGUI button. The cascade window is needed to set the parameters of the learning

algorithms CC and RCC. To start Cascade-Correlation, the learning function CC, the

update function CC Update and the init function CC Weights in the corresponding menues

have to be selected. Recurrent Cascade-Correlation is started in the same way, only that

this time the functions RCC, RCC Update and RCC Weights have to be selected. If one of

these functions is left out, a con�rmer window with an error message pops up and learning

does not start. The init functions of cascade di�er from the normal init functions: upon

initialization of a cascade net all hidden units are deleted.

The cascade window has the following text �elds, buttons and menus:

4

The candidate units are realized as special units in SNNS.

102 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

Figure 8.5: The cascade window

� Global parameters:

{ Max. pixel error:

This value is used as abort condition for the learning algorithms CC and RCC.

If the error of every single output unit is smaller than the given value learning

will be terminated.

{ Learning function:

Here, the learning function used to maximize the covariance or to minimize the

net error can be selected from a pull down menu. Available learning functions

are: Quickprop, Rprop and Backprop

{ Print covariance and error:

If this menu item shows on, the development of the error and and the covariance

of every candidate unit is printed. off prevents all outputs of the net.

� Candidate Parameters:

{ Min. covariance change:

The covariance must change by at least this fraction of its old value to count as

a signi�cant change. If this fraction is not reached, learning is halted and the

candidate unit with the maximum covariance is changed into a hidden unit.

{ Candidate patience:

After this number of steps the progam tests, whether there is a signi�cant

change of the covariance. The change is said to be signi�cant, if it is larger

8.9. TIME DELAY NETWORKS (TDNNS) 103

than the fraction given by Min. covariance change.

{ Max. no. of covariance updates:

The maximum number of steps to calculate the covariance. After reaching

this number, the candidate unit with the maximum covariance is changed to a

hidden unit.

{ Max. no. of candidate units:

The maximum number of candidate units trained at once.

{ Activation function:

This menu item makes it possible to choose between di�ernt activation func-

tions for the candidate units. The functions are: Act Logistic Act LogSym,

Act Tanh, Act Identity and Random. Random is not a real activation function.

It randomly assignes one of the other activation functions to each candidate

unit. The function Act LocSym is identical to Act Logistic, exept that it is

shifted by �0:5 along the y-axis.

� Output Parameters:

{ Error change:

analogous to Min. covariance change

{ Output patience:

analogous to Candidate patience

{ Max. no. of error updates:

analogous to Max. no. of covariance updates

The button DELETE CAND. UNITS deletes all candidate units. In SNNS the candidate

units are realized as special units.

8.9 Time Delay Networks (TDNNs)

8.9.1 TDNN Fundamentals

Time delay networks (or TDNN for short), introduced by Alex Waibel ([WHH

+

89]), are

a group of neural networks that have a special topology. They are used for position

independent recognition of features within a larger pattern. A special convention for

naming di�erent parts of the network is used here (see �gure 8.6)

� Feature: A component of the pattern to be learned.

� Feature Unit: The unit connected with the feature to be learned. There are as

many feature units in the input layer of a TDNN as there are features.

� Delay: In order to be able to recognize patterns place or time-invariant, older

activation and connection values of the feature units have to be stored. This is

performed by making a copy of the feature units with all their outgoing connections

in each time step, before updating the original units. The total number of time steps

saved by this procedure is called delay.

104 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

Time delayed copies Number of Receptive Field
after 3 delay stepsof the 2nd Feature Unit Feature Units

Output LayerInput Layer Hidden Layer

width
Receptive Field

Length
Total Delay

Delay
Length

Couppled Weights

2nd Feature Unit

Figure 8.6: The naming conventions of TDNNs

� Receptive Field: The feature units and their delays are fully connected to the

original units of the subsequent layer. These units are called receptive �eld. The

receptive �eld is usually, but not necessarily, as wide as the number of feature units;

the feature units might also be split up between several receptive �elds. Receptive

�elds may overlap in the source plane, but do have to cover all feature units.

� Total Delay Length: The length of the layer. It equals the sum of the length

of all delays of the network layers topological following the current one minus the

number of these subsequent layers.

� Coupled Links: Each link in a receptive �eld is reduplicated for every subsequent

step of time up to the total delay length. During the learning phase, these links are

treated as a single one and are changed according to the average of the changes they

would experience if treated seperately. Also the units' bias which realizes a spezial

sort of link weight is duplicated over all delay steps of a current feature unit. In

�gure 8.6 only two pairs of coupled links are depicted (out of 54 quadrupels) for

simplicity reasons.

The activation of a unit is normally computed by passing the weighted sum of its inputs to

an activation function, usually a threshold or sigmoid function. For TDNNs this behavior

is modi�ed through the introduction of delays. Now all the inputs of a unit are each

multiplied by the N delay steps de�ned for this layer. So a hidden unit in �gure 8.6 would

get 6 undelayed input links from the six feature units, and 7x6 = 48 input links from the

seven delay steps of the 6 feature units for a total of 54 input connections. Note, that

all units in the hidden layer have 54 input links, but only those hidden units activated at

time 0 (at the top most row of the layer) have connections to the actual feature units. All

other hidden units have the same connection pattern, but shifted to the bottom (i.e. to a

later point in time) according to their position in the layer (i.e. delay position in time).

By building a whole network of time delay layers, the TDNN can relate inputs in di�erent

points in time or input space.

8.9. TIME DELAY NETWORKS (TDNNS) 105

Training in this kind of networks is performed by a procedure similar to backpropagation,

that takes the special semantics of coupled links into account. To enable the network to

achieve the desired behavior, a sequence of patterns has to be presented to the input layer

with the feature shifted within the patterns. Remember, that since each of the feature

units is duplicated for each frame shift in time, the whole history of activations is available

at once. But since the shifted copies of the units are mere duplicates looking for the same

event, weights of the corresponding connections between the time shifted copies have to be

treated as one. First a regular forward pass of backpropagation is performed, and the error

in the output layer is computed. Then the error derivatives are computed and propagated

backward. This yields di�erent correction values for corresponding connections. Now all

correction values for corresponding links are averaged and the weights are updated with

this value.

This update algorithm forces the network to train on time/position independent detection

of subpatterns. This important feature of TDNNs makes them independent from error-

prone preprocessing algorithms for time alignment. The drawback is of course a rather

long, since computational intensive, learning phase.

8.9.2 TDNN Implementation in SNNS

The original time delay algorithm was slightly modi�ed for implementation in SNNS, since

it requires either variable network sizes or �xed length input patterns. Time delay networks

in SNNS are allowed no delay in the output layer. This has the following consequences:

� The input layer has �xed size.

� Not the whole pattern is present at the input layer at once. Therefore one pass

through the network is not enough to compute all necessary weight changes. This

makes learning more computationally intensive.

The coupled links are implemented as one physical (i.e. normal) link and a set of logical

links associated with it. Only the physikal links are displayed in the graphical user in-

terface. The bias of all delay units has no e�ect. Instead, the bias of the corresponding

feature unit is used during propagation and backpropagation.

Activation Function

For time delay networks the new activation function Act TD Logistic has been imple-

mented. It is similar to the regular logistic activation function Act Logistic but takes

care of the special coupled links. The mathematical notation is again

a

j

(t + 1) =

1

1 + e

�

(

P

i

w

ij

o

i

(t)��

j)

where o

i

includes now also the predecessor units along logical links.

106 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

Update Function

The update function TimeDelay Order is used to propagate patterns through a time delay

network. It's behavior is analogous to the Topological Order function with recognition

of logical links.

Learning Function

The learning function TimeDelayBackprop implements the modi�ed backpropagation algo-

rithm discussed above. It uses the same learning parameters as standart backpropagation.

8.9.3 Building and Using a Time Delay Network

In SNNS, TDNNs should be generated only with the tool BIGNET (Time Delay). This

program automatically de�nes the necessary variables and link structures of TDNNs. The

logical links are not depicted in the displays and can not be modi�ed with the graphical

editor. Any modi�cations of the units after the creation of the network may result in

undesired behavior or even system failure!

After the creation of the net, the unit activation function Act TD Logistic, the update

function TimeDelay Order, and the learning function TimeDelayBackprop have to be

assigned in the usual way.

NOTE: Only after the special time delay learning function has been assigned, will a save

of the network also save the special logical links! A network saved beforehand will lack

these links and be useless after a later load operation. Also using the TEST and STEP

button will destroy the special time delay information unless the right update function

(TimeDelay Order) has been chosen.

Patterns must �t the input layer. If the application requires variable pattern length, a

tool to segment these patterns into �tting pieces has to be applied. Patterns may also

be generated with the graphical user interface. In this case, it is the responsibility of the

user to supply enough patterns with time shifted features for the same teaching output to

allow a successful training.

8.10 Radial Basis Functions (RBFs)

The following section describes the use of generalized radial basis functions inside SNNS.

First, a brief introduction to the mathematical background of radial basis functions is

given. Second, the special procedures of initialization and training of neural nets based on

radial basis functions are described. At the end of the chapter a set of necessary actions

to use radial basis functions with a speci�c application are given.

8.10. RADIAL BASIS FUNCTIONS (RBFS) 107

8.10.1 RBF Fundamentals

The principle of radial basis functions derives from the theory of functional approximation.

Given N pairs (~x

i

; y

i

) (~x 2 <

n

; y 2 <) we are looking for a function f of the form:

f(~x) =

K

X

i=1

c

i

h(j~x�

~

t

i

j)

h is the radial basis function and

~

t

i

are the K centers which have to be selected. The

coe�cients c

i

are also unknown at the moment and have to be computed. ~x

i

and

~

t

i

are

elements of an n{dimensional vector space.

h is applied to the euclidian distance between each center

~

t

i

and the given argument ~x.

Usually a function h which has its maximum at a distance of zero is used, most often the

gaussian function. In this case, values of ~x which are equal to a center

~

t yield an output

value of 1.0 for the function h, while the output becomes almost zero for larger distances.

The function f should be an approximation of the N given pairs (~x

i

; y

i

) and should

therefore minimize the following error function H :

H [f] =

N

X

i=1

(y

i

� f(~x

i

))

2

+ �kPfk

2

The �rst part of the de�nition of H (the sum) is the condition which minimizes the total

error of the approximation, i.e. which constrains f to approximate the N given points.

The second part of H (kPfk

2

) is a stabilizer which forces f to become as smooth as

possible. The factor � determines the inuence of the stabilizer.

Under certain conditions it is possible to show that a set of coe�cients c

i

can be calculated

so that H becomes minimal. This calculation depends on the centers

~

t

i

which have to be

chosen beforehand.

Introducing the following vectors and matrices ~c = (c

1

; � � � ; c

K

)

T

; ~y = (y

1

; � � � ; y

N

)

T

G =

0

B

B

@

h(j ~x

1

�

~

t

1

j) � � � h(j ~x

1

�

~

t

K

j)

.

.

.

.

.

.

.

.

.

h(j ~x

N

�

~

t

1

j) � � � h(j ~x

N

�

~

t

K

j)

1

C

C

A

; G

2

=

0

B

B

@

h(j

~

t

1

�

~

t

1

j) � � � h(j

~

t

1

�

~

t

K

j)

.

.

.

.

.

.

.

.

.

h(j

~

t

K

�

~

t

1

j) � � � h(j

~

t

K

�

~

t

K

j)

1

C

C

A

the set of unknown parameters c

i

can be calculated by the formula:

~c = (G

T

�G+ �G

2

)

�1

�G

T

� ~y

By setting � to 0 this formula becomes identical to the computation of the Moore Penrose

inverse matrix, which gives the best solution of an underdetermined system of linear

equations. In this case, the linear system is exactly the one which follows directly from

the conditions of an exact interpolation of the given problem:

108 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

f(~x

j

) =

K

X

i=1

c

i

h(j ~x

j

�

~

t

i

j)

!

= y

j

; j = 1; : : :N

The method of radial basis functions can easily be represented by a three layer feedforward

neural network. The input layer consists of n units which represent the elements of the

vector ~x. The K components of the sum in the de�nition of f are represented by the units

of the hidden layer. The links between input and hidden layer contain the elements of the

vectors

~

t

i

. The hidden units compute the euclidian distance between the input pattern

and the vector which is represented by the links leading to this unit. The activation of the

hidden units is computed by applying the euclidian distance to the function h. Figure 8.7

shows the architecture of the special form of hidden units.

x

n

c

1

c

K

o

h(j~x�

~

t

j

j)

h(j~x�

~

t

j

j)

x

1

�

t

1;1

t

n;K

d

n

d

1

x

2

t

2;1

t

n;1

d

2

Figure 8.7: The special radial basis unit

The single output neuron gets its input from all hidden neurons. The links leading to the

output neuron hold the coe�cients c

i

. The activation of the output neuron is determined

by the weighted sum of its inputs.

The previously described architecture of a neural net, which realizes an approximation

using radial basis functions, can easily be expanded with some useful features: More than

one output neuron is possible which allows the approximation of several functions f around

the same set of centers

~

t

i

. The activation of the output units can be calculated by using

a nonlinear invertible function � (e.g. sigmoid). The bias of the output neurons and a

direct connection between input and hidden layer (shortcut connections) can be used to

improve the approximation's quality. The bias of the hidden units can be used to modify

the characteristics of the function h. All in all a neural network is able to represent the

following set of approximations:

8.10. RADIAL BASIS FUNCTIONS (RBFS) 109

o

k

(~x) = �

0

@

K

X

j=1

c

j;k

h

�

j~x�

~

t

j

j; p

j

�

+

n

X

i=1

d

i;k

x

i

+ b

k

1

A

= � (f

k

(~x)) ; k = 1; : : : ; m

This formula describes the behavior of a fully connected feedforward net with n input, K

hidden and m output neurons. o

k

(~x) is the activation of output neuron k on the input

~x = x

1

; x

2

; : : : ; x

n

to the input units. The coe�cients c

j;k

represent the links between

hidden and output layer. The shortcut connections from input to output are realized by

d

i;k

. b

k

is the bias of the output units and p

j

is the bias of the hidden neurons which

determines the exact characteristics of the function h. The activation function of the

output neurons is represented by �.

The big advantage of the method of radial basis functions is the possibility of a direct

computation of the coe�cients c

j;k

(i.e. the links between hidden and output layer) and

the bias b

k

. This computation requires a suitable choice of centers

~

t

j

(i.e. the links between

input and hidden layer). Because of the lack of knowledge about the quality of the

~

t

j

, it

is recommended to append some cycles of network training after the direct computation

of the weights. Since the weights of the links leading from the input to the output layer

can also not be computed directly, there must be a special training procedure for neural

networks that uses radial basis functions.

The implemented training procedure tries to minimize the error E by using gradient

descent. It is recommended to use di�erent learning rates for di�erent groups of trainable

parameters. The following set of formulas contains all information needed by the training

procedure:

E =

m

X

k=1

N

X

i=1

(y

i;k

� o

k

(~x

i

))

2

!

; �

~

t

j

= ��

1

@E

@

~

t

j

; �p

j

= ��

2

@E

@p

j

�c

j;k

= ��

3

@E

@c

j;k

; �d

i;k

= ��

3

@E

@d

i;k

; �b

k

= ��

3

@E

@b

k

It is often helpful to use a momentum term. This term increases the learning rate in

smooth error planes and decreases it in rough error planes. The next formula describes

the e�ect of a momentum term on the training of a general parameter g depending on the

additional parameter �. �g

t+1

is the change of g during the time step t + 1 while �g

t

is

the change during time step t:

�g

t+1

= ��

@E

@g

+ ��g

t

Another useful improvement of the training procedure is the de�nition of a maximum

allowed error inside the output neurons. This prevents the network from getting over-

trained, since errors that are smaller than the prede�ned value are treated as zero. This

in turn prevents the corresponding links from being changed.

110 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

8.10.2 RBF Implemetation in SNNS

8.10.2.1 Activation Functions

For the use of radial basis functions, three di�erent activation functions h have been

implemented. For computational e�ciency the square of the distance r

2

= j~x �

~

tj

2

is

uniformly used as argument for h. Also, an additional argument p has been de�ned which

represents the bias of the hidden units. The vectors ~x and

~

t result from the activation and

weights of links leading to the corresponding unit. The following radial basis functions

have been implemented:

1. Act RBF Gaussian | the gaussian function

h(r

2

; p) = h(q; p) = e

�pq

where q = j~x�

~

t j

2

2. Act RBF MultiQuadratic | the multiquadratic function

h(r

2

; p) = h(q; p) =

p

p+ q where q = j~x�

~

t j

2

3. Act RBF ThinPlateSpline { the thin plate splines function

h(r

2

; p) = h(q; p) = p

2

q ln(p

p

q) where q = j~x�

~

t j

2

= (pr)

2

ln(pr) where r = j~x�

~

t j

During the construction of three layered neural networks based on radial basis functions,

it is important to use the three activation functions mentioned above only for neurons

inside the hidden layer. There is also only one hidden layer allowed.

For the output layer two other activation functions are to be used:

1. Act IdentityPlusBias

2. Act Logistic

Act IdentityPlusBias activates the corresponding unit with the weighted sum of all

incoming activations and adds the bias of the unit. Act Logistic applies the sigmoid

logistic function to the weighted sum which is computed like in Act IdentityPlusBias.

In general, it is necessary to use an activation function which pays attention to the bias

of the unit.

The last two activation functions converge towards in�nity, the �rst converges towards

zero. However, all three functions are useful as base functions. The mathematical precon-

ditions for their use are ful�lled by all three functions and their use is backed by practical

experience. All three functions have been implemented as base functions into SNNS.

The most frequently used base function is the gaussian function. For large distances r, the

gaussian function becomes almost 0. Therefore, the behavior of the net is easy to predict

if the input patterns di�er strongly from all teaching patterns. Another advantage of the

gaussian function is, that the network is able to produce useful results without the use of

shortcut connections between input and output layer.

8.10. RADIAL BASIS FUNCTIONS (RBFS) 111

8.10.2.2 Initialization Functions

The goal in initializing a radial basis function network is the optimal computation of link

weights between hidden and output layer. Here the problem arises that the centers

~

t

j

(i.e.

link weights between input and hidden layer) as well as the parameter p (i.e. the bias of

the hidden units) must be set properly. Therefore, three di�erent initialization procedures

have been implemented which perform di�erent tasks:

1. RBF Weights: This procedure �rst selects evently distributed centers

~

t

j

from the

loaded training patterns and assigns them to the links between input and hidden

layer. Subsequently the bias of all neurons (parameter p) inside the hidden layer

is set to a value determined by the user and �nally the links between hidden and

output layer are computed.

2. RBF Weights Redo: In contrast to the preceding procedure only the links between

hidden and output layer are computed. All other links and bias remain unchanged.

3. RBF Weights Kohonen: Using the self{organizing method of Kohonen feature maps,

appropriate centers are generated on base of the teaching patterns. The computed

centers are copied into the corresponding links. No other links and bias are changed.

It is necessary that valid patterns are loaded into SNNS to use the initialization. If no

patterns are present upon starting any of the three procedures an alert box will occur

showing the error. A detailed description of the procedures and the parameters used is

given in the following paragraphs.

RBF Weights Of the named three procedures RBF Weights is the most comprehensive

one. Here all necessary initialization tasks (setting link weights and bias) for a fully con-

nected three layer feedforward network (without shortcut connections) can be performed

in one single step. Hence, the choice of centers (i.e. the link weights between input and

hidden layer) is rather simple: The centers are evenly selected from the loaded teaching

patterns and assigned to the links of the hidden neurons. The selection process assigns

the �rst teaching pattern to the �rst hidden unit, and the last pattern to the last hidden

unit. The remaining hidden units receive centers which are evenly picked from the set of

teaching patterns. If, for example, 13 teaching patterns are loaded and the hidden layer

consists of 5 neurons, then the patterns with numbers 1, 4, 7, 10 and 13 are selected as

centers.

Before a selected teaching pattern is distributed among the corresponding link weights

it can be modi�ed slightly with a random number. For this purpose, an initialization

parameter (deviation, see �gure 8.8) is set, which determines the maximum percentage

of deviation allowed to occur randomly. To calculate the deviation, an inverse tangent

function is used to approximate a normal distribution so that small deviations are more

probable than large deviations. Setting the parameter deviation to 1.0 results in a max-

imum deviation of 100%. The centers are copied unchanged into the link weights if the

deviation is set to 0.

A small modi�cation of the centers is recommended for the following reasons: First, the

number of hidden units may exceed the number of teaching patterns. In this case it is

112 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

0 scale 1 scale smoothness

bias (p) deviation

Figure 8.8: complete initialization of all parameters

necessary to break the symmetry which would result without modi�cation. This symme-

try would render the calculation of the Moore Penrose inverse matrix impossible. The

second reason is that there may be a few anomalous patterns inside the set of teaching

patterns. These patterns would cause bad initialization results if they accidentally were

selected as a center. By adding a small amount of noise, the negative e�ect caused by

anomalous patterns can be lowered. However, if an exact interpolation is to be performed

no modi�cation of centers may be allowed.

The next initialization step is to set the free parameter p of the base function h, i.e. the

bias of the hidden neurons. In order to do this, the initialization parameter bias (p) is

directly copied into the bias of all hidden neurons. The setting of the bias is highly related

to the base function h used and to the properties of the teaching patterns. When the

gaussian function is used, it is recommended to choose the value of the bias so that 5{10%

of all hidden neurons are activated during propagation of every single teaching pattern.

If the bias is chosen too small, almost all hidden neurons are uniformly activated during

propagation. If the bias is chosen too large, only that hidden neuron is activated whose

center vector corresponds to the currently applied teaching pattern.

Now the expensive initialization of the links between hidden and output layer is actually

performed. In order to do this, the following formula which was already presented above

is applied:

~c = (G

T

�G+ �G

2

)

�1

�G

T

� ~y

The initialization parameter smoothness (see �gure 8.8) represents the value of � in this

formula. The matrices have been extended to allow an automatic computation of an

additional constant value. If there is more than one neuron inside the output layer, the

following set of functions results:

f

j

(~x) =

K

X

i=1

c

i;j

h

i

(~x) + b

j

8.10. RADIAL BASIS FUNCTIONS (RBFS) 113

The bias of the output neuron(s) is directly set to the calculated value of b (b

j

). Therefore,

it is necessary to choose an activation function for the output neurons that uses the

bias of the neurons. In the current version of SNNS, the functions Act Logistic and

Act IdentityPlusBias implement this feature.

The activation functions of the output units lead to the remaining two initialization pa-

rameters. The initialization procedure assumes a linear activation of the output units.

The link weights are calculated so that the weighted sum of the hidden neurons equals

the teaching output. However, if a sigmoid activation function is used, which is recom-

mended for pattern recognition tasks, the activation function has to be considered during

initialization. Ideally, the supposed input for the activation function should be computed

with the inverse activation function depending on the corresponding teaching output.

This input value would be associated with the vector ~y during the calculation of weights.

Unfortunately, the inverse activation function is unknown in the general case.

The two initialization parameters 0 scale and 1 scale are a remedy for this dilemma

(see �gure 8.8). They de�ne the two control points of a piecewise linear function which

approximates the activation function. 0 scale and 1 scale give the net inputs of the

output units which produce the teaching outputs 0 and 1. If, for example, the linear

activation function Act IdentityPlusBias is used, the values 0 and 1 have to be used

like in �gure 8.8. When using the logistic activation function Act Logistic, the values -4

and 4 are recommended. If the bias is set to 0, these values lead to a �nal activation of

0:018 (resp. 0:982). These are comparatively good approximations of the desired teaching

outputs 0 and 1. The implementation interpolates linearly between the set values of

0 scale and 1 scale. Thus, also teaching values which di�er from 0 and 1 are mapped to

corresponding input values.

0

1

-4 0 4

logistic activation
linear approximation

out

net

0scale 1scale

Figure 8.9: Relation between teaching output, input value and logistic activation

Figure 8.9 shows the activation of an output unit under use of the logistic activation

function. The scale has been chosen in such a way, that the teaching outputs 0 and 1 are

maped to the input values �2 and 2.

The optimal values used for 0 scale and 1 scale can not be given in general. With the

logistic activation function large scaling values lead to good initialization results, but

114 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

interfere with the subsequent training, since the logistic function is used mainly in its very

at parts. On the other hand, small scaling values lead to bad initialization results, but

produce good preconditions for additional training.

RBF Weights Kohonen One disadvantage of the above initialization procedure is the

very simple selection of center vectors from the set of teaching patterns. It would be

favorable if the center vectors would homogeneously cover the space of teaching patterns.

RBF Weights Kohonen allows a self{organizing training of center vectors. Here, just as the

name of the procedure already tells, the self{organizing maps of Kohonen are used (see

[Was89]). The simplest version of Kohonen's maps has been implemented. It works as

follows:

One precondition for the use of Kohonen maps is that the teaching patterns have to be

normalized. This means, that they represent vectors with length 1. K patterns have to

be selected from the set of n teaching patterns acting as starting values for the center

vectors. Now the scalar product between one teaching pattern and each center vector is

computed. If the vectors are normalized to length 1, the scalar product gives a measure

for the distance between the two multiplied vectors. Now the center vector is determined

whose distance to the current teaching pattern is minimal, i.e. whose scalar product is the

largest one. This center vector is moved a little bit in the direction of the current teaching

pattern:

~z

new

= ~z

old

+ �(

~

l� ~z

old

)

This procedure is repeated for all teaching patterns several times. As a result, the center

vectors adapt the statistical properties of the set of teaching patterns.

learn cycles learning rate shuffle

Figure 8.10: Initialization of center vectors

Figure 8.10 shows the meaning and location of the initialization parameters in the popup

window.

1. learn cycles: determines the number of iterations of the Kohonen training for all

teaching patterns. If 0 epochs are speci�ed only the center vectors are set, but no

training is performed.

8.10. RADIAL BASIS FUNCTIONS (RBFS) 115

2. learning rate �: It should be picked between 0 and 1. A learning rate of 0 leaves

the center vectors unchanged. Using a learning rate of 1 replaces the selected center

vector by the current teaching pattern.

3. shu�e: Determines the selection of initial center vectors at the beginning of the pro-

cedure. A value of 0 leads to the even selection already described for RBF Weights.

Any value other than 0 causes a random selection of center vectors from the set of

teaching patterns.

Note, that the described initialization procedure initializes only the center vectors (i.e. the

link weights between input and hidden layer). The bias values of the neurons have to

be set manually using the graphical user interface. To perform the �nal initialization of

missing link weights, another initialization procedure has been implemented.

RBF Weights Redo This initialization procedure inuences only the link weights be-

tween hidden and output layer. It initializes the network as well as possible by taking the

bias and the center vectors of the hidden neurons as a starting point. The center vectors

can be set by the previously described initialization procedure. Another possibility is to

create the center vectors by an external procedure, convert these center vectors into a

SNNS pattern �le and copy the patterns into the corresponding link weights by using the

previously described initialization procedure. When doing this, Kohonen training must

not be performed of course.

0 scale 1 scale smoothness

Figure 8.11: Initialization of the second link layer

The e�ect of the procedure RBF Weights Redo di�ers from RBF Weights only in the way

that the center vectors and the bias remain unchanged. As expected, the last two initial-

ization parameters are omitted. The meaning and e�ect of the remaining three parameters

is identical with the ones described in RBF Weights.

8.10.2.3 Learning Functions

Because of the special activation functions used for radial basis functions, a special learning

function is needed. It is impossible to train networks which use the activation functions

Act RBF : : : with backpropagation. The learning function for radial basis functions imple-

mented here can only be applied if the neurons which use the special activation functions

116 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

are forming the hidden layer of a three layer feedforward network. Also the neurons of the

output layer have to pay attention to their bias for activation.

The name of the special learning function is RadialBasisLearning. Figure 8.12 shows

the names and the arrangement of the learning parameters:

Zentren Gewichte Momentum

max. FehlerBias (p)

Figure 8.12: Meaning of the learning parameters

1. �

1

(centers): the learning rate used for the modi�cation �

~

t

j

of center vectors ac-

cording to the formula �

~

t

j

= ��

1

@E

@

~

t

j

.

2. �

2

(bias p): learning rate used for the modi�cation of the parameters p of the base

function. p is stored as bias of the hidden units and is trained by the following

formula �p

j

= ��

2

@E

@p

j

.

3. �

3

(weights): learning rate which inuences the training of all link weights that are

leading to the output layer as well as the bias of all output neurons.

�c

j;k

= ��

3

@E

@c

j;k

; �d

i;k

= ��

3

@E

@d

i;k

; �b

k

= ��

3

@E

@b

k

4. delta max.: To prevent an overtraining of the network the maximally tolerated error

in an output unit can be de�ned. If the actual error is smaller than delta max. the

corresponding weights are not changed. Common values range from 0 to 0:3.

5. momentum: momentum term during training, after the formula �g

t+1

= ��

@E

@g

+

��g

t

. The momentum{term is usually chosen between 0:8 and 0:9.

The learning rates �

1

to �

3

have to be selected very carefully. If the values are chosen too

large (like the size of values for backpropagation) the modi�cation of weights will be too

extensive and the learning function will become unstable. Tests showed, that the learning

procedure becomes more stable if only one of the three learning rates is set to a value

bigger than 0. Most critical is the parameter bias (p), because the base functions are

fundamentally changed by this parameter.

Tests also showed that the learning function working in batch mode is much more stable

than in online mode. Batch mode means that all changes become active not before all

8.10. RADIAL BASIS FUNCTIONS (RBFS) 117

learning patterns have been presented once. This is also the training mode which is

recommended in the literature about radial basis functions. The opposite of batch mode

is known as online mode, where the weights are changed after the presentation of every

single teaching pattern. Which mode is to be used can be de�ned during compilation of

SNNS. The online mode is activated by de�ning the C macro RBF INCR LEARNING during

compilation of the simulator kernel.

8.10.3 Building a Radial Basis Function Application

As a �rst step, a three{layer feedforward network must be constructed with full connec-

tivity between input and hidden layer and between hidden and output layer. Either the

graphical editor or the tool BIGNET (both built into SNNS) can be used for this purpose.

The output function of all neurons is set to Out Identity. The activation function of

all hidden layer neurons is set to one of the three special activation functions Act RBF : : :

(preferably to Act RBF Gaussian). For the activation of the output units, a function is

needed which takes the bias into consideration. These functions are Act Logistic and

Act IdentityPlusBias.

The next step consists of the creation of teaching patterns. They can be generated man-

ually using the graphical editor, or automatically from external data sets by using an

appropriate conversion program. If the initialization procedure RBF Weights Kohonen is

going to be used, the center vectors should be normalized to length 1, or to equal length.

It is necessary to select an appropriate bias for the hidden units before the initialization is

continued. Therefore, the link weights between input and hidden layer are set �rst, using

the procedure RBF Weights Kohonen so that the center vectors which are represented by

the link weights form a subset of the available teaching patterns. The necessary initializa-

tion parameters are: learn cycles = 0, learning rate = 0:0, shu�e = 0:0. Thereby teaching

patterns are used as center vectors without modi�cation.

To set the bias, the activation of the hidden units is checked for di�erent teaching patterns

by using the button TEST of the SNNS remote panel. When doing this, the bias of the

hidden neurons have to be adjusted so that the activations of the hidden units are as diverse

as possible. Using the gaussian function as base function, all hidden units are uniformly

highly activated, if the bias is chosen too small (the case bias = 0 leads to an activation of

1 of all hidden neurons). If the bias is chosen too large, only the unit is activated whose

link weights correspond to the current teaching pattern. A useful procedure to �nd the

right bias is to �rst set the bias to 1, and then to change it uniformly depending on the

behavior of the network. One must take care, however, that the bias does not become

negative, since some implemented base functions require the bias to be positive. The

optimal choice of the bias depends on the dimension of the input layer and the similarity

among the teaching patterns.

After a suitable bias for the hidden units has been determined, the initialization procedure

RBF Weights can be started. Depending on the selected activation function for the output

layer, the two scale parameters have to be set (see page 113). When Act IdentityPlus-

Bias is used, the two values 0 and 1 should be chosen. For the logistic activation function

118 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

Act Logistic the values -4 and 4 are recommended (also see �gure 8.9). The parameters

smoothness and deviation should be set to 0 �rst. The bias is set to the previously

determined value. Depending on the number of teaching patterns and the number of

hidden neurons, the initialization procedure may take rather long to execute. Therefore,

some processing comments are printed on the terminal during initialization.

After the initialization has �nished, the result may be checked by using the TEST but-

ton. However, the exact network error can only be determined by the teaching function.

Therefore, the learning function RadialBasisLearning has to be selected �rst. All learn-

ing parameters are set to 0 and the number of learning cycles (CYCLES) is set to 1. After

pressing the button ALL , the learning function is started. Since the learning param-

eters are set to 0, no changes inside the network will occur. After the presentation of

all available teaching patterns, the actual error is printed to the terminal. As usual, the

error is de�ned as the sum of squared errors of all output units (see formula 8.1). Under

certain conditions it can be possible that the error becomes very large. This is mostly due

to numerical problems. A poorly selected bias, for example, has shown to be a di�cult

starting point for the initialization. Also, if the number of teaching patterns is less than or

equal to the number of hidden units a problem arises. In this case the number of unknown

weights plus unknown bias values of output units exceeds the number of teaching patterns,

i.e. there are more unknown parameters to be calculated than equations available. One or

more neurons less inside the hidden layer then reduces the error considerably.

After the �rst initialization it is recommended to save the current network to test the

possibilities of the learning function. It has turned out that the learning function becomes

quickly unstable if too large learning rates are used. It is recommended to �rst set only

one of the three learning rates (centers, bias (p), weights) to a value larger than 0 and

to check the sensitivity of the learning function on this single learning rate. The use of

the parameter bias (p) is exceptionally critical because it causes serious changes of the

base function. If the bias of any hidden neuron is getting negative during learning, an

appropriate message is printed to the terminal. In that case, a continuing meaningfull

training is impossible and the network should be reinitialized.

Immediately after initialization it is often useful to train only the link weights between

hidden and output layer. Thereby the numerical inaccuracies which appeared during

initialization are corrected. However, an optimized total result can only be achieved if

also the center vectors are trained, since they might have been selected disadvantageously.

The initialization procedure used for direct link weight calculation is unable to calculate the

weights between input and output layer. If such links are present, the following procedure

is recommended: Even before setting the center vectors by using RBF Weights Kohonen,

and before searching an appropriate bias, all weights should be set to random values

between �0:1 and 0:1 by using the initialization procedure Randomize Weights. Thereby,

all links between input and output layer are preinitialized. Later on, after executing the

procedure RBF Weights, the error of the network will still be relatively large, because the

above mentioned links have not been considered. Now it is easy to train these weights by

only using the teaching parameter weights during learning.

8.11. ART MODELS IN SNNS 119

8.11 ART Models in SNNS

This section will describe the use of the three ART models ART1, ART2 and ARTMAP,

as they are implemented in SNNS. It will not give detailed information on the Adaptive

Resonance Theory. You should already know the theory to be able to understand this

chapter. For the theory the following literature is recommended:

[CG87a] Original paper, describing ART1 theory.

[CG87b] Original paper, describing ART2 theory.

[CG91] Original paper, describing ARTMAP theory.

[Her92] Description of theory, implementation and application of the ART models in SNNS

(in German).

There will be one subsection for each of the three models and one subsection describ-

ing the required topologies of the networks when using the ART learning-, update- or

initialization-functions. These topologies are rather complex. For this reason the network

creation tool BigNet has been extended. It now o�ers an easy way to create ART1, ART2

and ARTMAP networks according to your requirements. For a detailed explanation of

the respective features of BigNet see chapter 6.

8.11.1 ART1

8.11.1.1 Structure of an ART1 Network

The topology of ART1 networks in SNNS has been chosen to to perform most of the ART1

algorithm within the network itself. This means that the mathematics is realized in the

activation and output functions of the units. The idea was to keep the propagation and

training algorithm as simple as possible and to avoid procedural control components.

In �gure 8.13 the units and links of ART1 networks in SNNS are displayed.

The F

0

or input layer (labeled inp in �gure 8.13) is a set of N input units. Each of them

has a corresponding unit in the F

1

or comparison layer (labeled cmp). The M elements

in the F

2

layer are split into three levels. So each F

2

element consists of three units. One

recognition (rec) unit, one delay (del) unit and one local reset (rst) unit. These three

parts are necessary for di�erent reasons. The recognition units are known from the theory.

The delay units are needed to synchronize the network correctly

5

. Besides, the activated

unit in the delay layer shows the winner of F

2

. The job of the local reset units is to block

the actual winner of the recognition layer in case of a reset.

Finally, there are several special units. The cl unit gets positive activation when the input

pattern has been successfully classi�ed. The nc unit indicates an unclassi�able pattern,

when active. The gain units g

1

and g

2

with their known functions and at last the units ri

(reset input), rc (reset comparison), rg (reset general) and �(vigilance), which realize the

reset function.

5

This is only important for the chosen realization of the ART1 learning algorithm in SNNS

120 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

Figure 8.13: Structure of an ART1 network in SNNS. Thin arrows represent a connection

from one unit to another. Fat arrows which go from a layer to a unit indicate that each

unit of the layer is connected to the target unit. Similarly a fat arrow from a unit to

a layer means that the source unit is connected to each of the units in the target layer.

The two big arrows in the middle represent the full connection between comparison and

recognition layer and the one between delay and comparison layer, respectively.

For an exact de�nition of the required topology for ART1 networks in SNNS see sec-

tion 8.11.4

8.11.1.2 Using ART1 Networks in SNNS

To use an ART1 network in SNNS several functions have been implemented: one to

initialize the network, one to train it and two di�erent update functions to propagate an

input pattern through the net.

ART1 Initialization Function First the ART1 initialization function ART1 Weights

has to be selected from the list of initialization functions.

8.11. ART MODELS IN SNNS 121

β γ

Figure 8.14: ART1 initialization parameters � and .

ART1 Weights is responsible to set the initial values of the trainable links in an ART1

network. These links are the ones from F

1

to F

2

and the ones from F

2

to F

1

respectively.

The F

2

! F

1

links are all set to 1.0 as described in [CG87a]. The weights of the links from

F

1

to F

2

are a little more di�cult to explain. To assure that in an initialized network the

F

2

units will be used in their index order, the weights from F

1

to F

2

must decrease with

increasing index. Another restriction is, that each link-weight has to be greater than 0

and smaller than 1=N . De�ning �

j

as a link-weight from a F

1

unit to the jth F

2

unitthis

yields

0 < �

M

< �

M�1

< : : : < �

1

�

1

� +N

: (8.1)

To get concrete values, we have to decrease the fraction on the right side with increasing

index j and assign this value to �

j

. For this reason we introduce the value � and we obtain

�

j

�

1

� + (1 + j�)N

: (8.2)

� is calculated out of a new parameter and the number of F

2

units M :

� �

M

: (8.3)

So we have two parameters for ART1 Weights: � and . For both of them a value of 1.0

is useful for the initialization. The �rst parameter of the initialization function is �, the

second one is (�gure 8.14). Having chosen � and one must press the INIT -button to

perform initialization.

The parameter � is stored in the bias �eld of the unit structure to be accessible to the

learning function when adjusting the weights.

One should always use ART1 Weights to initialize ART1 networks. When using another

SNNS initialization function the behaviour of the simulator during learning is not pre-

dictable, because not only the trainable links will be initialized, but also the �xed weights

of the network.

122 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

ρ

Figure 8.15: Setting the ART1 learning parameter �.

ART1 Learning Function To train an ART1 network select the learning function

ART1.

To start the training of an ART1 network, choose the vigilance parameter � as shown

in �gure 8.15 and the number of learning cycles. Parameter �, which is also needed to

adjust the trainable weights between F

1

and F

2

, has already been speci�ed as initialization

parameter. It is stored in the bias �eld of the unit structure and read out by ART1 when

needed.

ART1 Update Functions To propagate a new pattern through an ART1 network

without adjusting weights, i.e. to classify a pattern, two di�erent update functions have

been implemented:

� ART1 Stable and

� ART1 Synchronous.

Like the learning function, both of the update functions only take the vigilance value �

as parameter. It has to be entered in the remote panel, the line below the parameters for

the learning function. The di�erence between the two update functions is the following:

ART1 Stable propagates a pattern until the network is stable, i.e. either the cl unit or

the nc unit is active. To use this update function, you can use the TEST -button of the

remote panel. The next pattern is copied to the input units and propagated completely

through the net, until a stable state is reached.

ART1 Synchronous, performs just one propagation step with each call. To use this function

you have to press the RESET -button to reset the net to a de�ned initial state, where

each unit has its initial activation value. Then copy a new pattern into the input layer,

using the buttons < and > . Now you can choose the desired number of propagation

steps that should be performed, when pressing the STEP -button (default is 1). With

this update function it is very easy to observe how the ART1 learning algorithm does its

job.

So use ART1 Synchronous, to trace a pattern through a network, ART1 Stable to propagate

the pattern until a stable state is reached.

8.11. ART MODELS IN SNNS 123

Figure 8.16: Structure of an ART2 network in SNNS. Thin arrows represent a connection

from one unit to another. The two big arrows in the middle represent the full connectivity

between comparison and recognition layer and the one between recognition and comparison

layer, respectively.

8.11.2 ART2

8.11.2.1 Structure of an ART2 Network

The realization of ART2 di�ers from the one of ART1 in its basic idea. In this case the

network structure would have been too complex, if mathematics had been implemented

within the network to the same degree as it has been done for ART1. So here more of

the functionality is in the control program. In �gure 8.16 you can see the topology of an

ART2 network as it is implemented in SNNS.

All the units are known from the ART2 theory, except the rst units. They have to do the

same job for ART2 as for ART1 networks. They block the actual winner in the recognition

layer in case of reset. Another di�erence between the ART2 model described in [CG87b]

and the realisation in SNNS is, that originally the units u

i

have been used to compute the

error vector r, while this implementation takes the input units instead.

For an exact de�nition of the required topology for ART2 networks in SNNS see sec-

tion 8.11.4

8.11.2.2 Using ART2 Networks in SNNS

As for ART1 there are an initialization function, a learning function and two update

functions for ART2. To initialize, train or test an ART2 network, these functions have to

124 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

be used. The description of the handling, is not repeated in detail in this section since it

is the same as with ART1. Only the parameters for the functions will be mentioned here.

ART2 Initialization Function For an ART2 network the weights of the top-down-

links (F

2

! F

1

links) are set to 0.0 according to the theory ([CG87b]).

The choice of the initial bottom-up-weights is determined as follows: if a pattern has been

trained, then the next presentation of the same pattern must not generate a new winning

class. On the contrary, the same F

2

unit should win, with a higher activation than all the

other recognition units.

This implies that the norm of the initial weight-vector has to be smaller than the one it

has after several training cycles. If J (1 � J �M) is the actual winning unit in F

2

, then

equation 8.4 is given by the theory:

jjz

J

jj !

�

�

�

�

�

�

�

�

u

1� d

�

�

�

�

�

�

�

�

=

1

1� d

; (8.4)

where z

J

is the the weight vector of the links from the F

1

units to the Jth F

2

unit and

where d is a parameter, described below.

If all initial values z

ij

(0) are presumed to be equal, this means:

z

ij

(0) �

1

(1� d)

p

N

8 1 � i � N; 1 � j �M: (8.5)

If equality is choosen in equation 8.5, then ART2 will be as sensitive as possible.

To transform the inequality 8.5 to an equation, in order to compute values, we introduce

another parameter and get:

z

ij

(0) =

1

(1� d)

p

N

8 1 � i � N; 1 � j �M; (8.6)

where � 1.

To initialize an ART2 network, you have to select the function ART2 Weights. You have to

pass the parameters d and to the initialization function in the given order, as shown in

�gure 8.17. (A description of parameter d is given in the subsection on the ART2 learning

function.) Finally press the INIT -button to initialize the net.

WARNING! You should always use ART2 Weights to initialize ART2 networks. When

using another SNNS initialization function the behaviour of the simulator during learning

is not predictable, because not only the trainable links will be initialized, but also the

�xed weights of the network.

8.11. ART MODELS IN SNNS 125

d γ

Figure 8.17: ART2 initialization parameters d and .

ART2 Learning Function For the ART2 learning function ART2 there are various

parameters to specify. Here is a list of all parameters known from the theory:

� Vigilance parameter. (�rst parameter of the learning and update function). � is

de�ned on the interval 0 � � � 1: For some reason, described in [Her92] only the

following interval makes sense:

1

2

p

2 � � � 1:

a Strength of the inuence of the lower level in F

1

by the middle level. (second

parameter of the learning and update function). Parameter a de�nes the importance

of the expection of F

2

, propagated to F

1

: a > 0: Normally a value of a� 1 is choosen

to assure quick stabilisation in F

1

.

b Strength of the inuence of the middle level in F

1

by the upper level. (third pa-

rameter of the learning and update function). For parameter b things are similar

to parameter a. A high value for b is even more important, because otherwise the

network could become instable ([CG87b]). b > 0;normally:b� 1:

c Part of the length of vector p (units p

1

: : :p

N

) used to compute the error. (fourth

parameter of the learning and update function). Choose c within 0 < c < 1.

d Output value of the F

2

winner unit. You won't have to pass d to ART2, because

this parameter is already needed for initialization. So you have to enter the value,

when initializing the network (see subsection on the initialization function). Choose

d within 0 < d < 1. The parameters c and d are dependent on each other. For

reasons of quick stabilsation c should be choosen as follows: 0 < c � 1. On the

other hand c and d have to �t the following condition: 0�

cd

1�d

� 1:

e Prevents from division by zero. Since this parameter does not help to solve essential

problems, it is implemented as a �x value within the SNNS source code.

� Kind of threshold. For 0 � x; q � � the activation values of the units x

i

and

q

i

only have small inuence (if any) on the middle level of F

1

. The output function

f of the units x

i

and q

i

takes � as its parameter. Since this noise function is conti-

nously di�erentiable, it is called Out ART2 Noise ContDiff in SNNS. Alternatively

a piecewise linear output function may be used. In SNNS the name of this function

is Out ART2 Noise PLin. Choose � within 0 � � < 1:

To train an ART2 network, make sure, you have choosen the learning function ART2. As

a �rst step initialize the network with the initialization function ART2 Weights described

above. Then choose the �ve parameters �, a, b, c and �, as shown in �gure 8.18. Select

the number of learning cycles and �nally use the buttons SINGLE and ALL to train a

126 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

single pattern or all patterns at a time, respectively.

ρ a b c Θ

Figure 8.18: Setting the ART2 learning parameters �, a, b, c and �.

ART2 Update Functions Again two update functions for ART2 networks have been

implemented:

� ART2 Stable

� ART2 Synchronous.

Meaning and usage of these functions are equal to their equivalents of the ART1 model.

For both of them the parameters �, a, b, c and � have to be de�ned in the row of update

parameters in the remote panel.

8.11.3 ARTMAP

8.11.3.1 Structure of an ARTMAP Network

Since an ARTMAP network is based on two networks of the ART1 model, it is useful to

know how ART1 is realized in SNNS. Having taken two of the ART1 (ART

a

and ART

b

)

networks as they were de�ned in section 8.11.1, we add several units that represent the

MAP �eld. The connections between ART

a

and the MAP �eld, ART

b

and the MAP �eld,

as well as those within the MAP �eld are shown in �gure 8.19. The �gure lacks the full

connection from the F

a

2

layer to the F

ab

layer and those from each F

b

2

unit to its respective

F

ab

unit and vice versa.

The map �eld units represent the categories, onto which the ART

a

classes are mapped

6

.

The G unit is the MAP �eld gain unit. The units rm (reset map), rb (reset F

b

2

),

rg (reset general), � (vigilance) and d

1

(delay 1) represent the inter-ART-reset control.

�� and qu (quotient) have to realize the Match-Tracking-Mechanism and cl (classi�ed)

and nc (not classi�able) again show whether a pattern has been classi�ed or was not

classi�able.

6

Di�erent ART

a

classes may be mapped onto the same category.

8.11. ART MODELS IN SNNS 127

Figure 8.19: The MAP �eld with its control units.

βa

γb

γa βb

Figure 8.20: ARTMAP initialization parameters �

a

and

a

, �

b

and

b

.

8.11.3.2 Using ARTMAP Networks in SNNS

ARTMAP Initialization Function Since the trainable weights of an ARTMAP net-

work are primarily the ones of the two ART1 networks ART

a

and ART

b

, it is easy

to explain the ARTMAP initialization function ARTMAP Weights. To use this function

you have to select ARTMAP Weights from the menu of the initialization functions. For

ARTMAP Weights you have to choose four parameters: �

a

,

a

, �

b

and

b

, as shown in

�gure 8.20. You can look up the meaning of each pair �

?

,

?

in section 8.11.1.2, for the

respective ART

?

-part of the network.

ARTMAP Learning Function Select the ARTMAP learning function ARTMAP from

the menu of the learning functions. Specify the three parameters �

a

, �

b

and �, as it is

shown in �gure 8.21. �

a

is the initial vigilance parameter for the ART

a

-part of the net,

which may be modie�ed by the Match-Tracking-Mechanism. �

b

is the vigilance parameter

128 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

for the ART

b

-part and � is the one for the Inter-ART-Reset control.

ρρa bρ

Figure 8.21: Setting the ARTMAP learning parameters �

a

, �

b

and �.

ARTMAP Update Functions For ARTMAP two update functions have been imple-

mented, as well:

� ARTMAP Stable

� ARTMAP Synchronous.

ARTMAP Stable is again used to propagate a pattern through the network until a stable

state is reached, while ARTMAP Synchronous does only perform one propagation step at a

time. For both of the functions the parameters �

a

, �

b

and � have to be speci�ed in the

line for update parameters of the remote panel. The usage is the same as it is for ART1

and ART2 networks.

8.11.4 Topology of ART Networks in SNNS

The following tables are an exact description of the topology requirements for the ART

models ART1, ART2 and ARTMAP. For ARTMAP the topologies of the two ART1-parts

of the net are the same as the one shown in the ART1 table.

8.11. ART MODELS IN SNNS 129

ART1 and ART1-parts of ARTMAP (ART

a

, ART

b

)

site de�nition

site name site function

rst self Site WeightedSum

rst signal Site at least 2

inp g1 Site at least 1

rec g1 Site at most 0

inp ri Site WeightedSum

rho ri Site WeightedSum

unit de�nition connections

unit top. activation output site- target target

name type function function names unit site

inp

i

i Act Identity Out Identity cmp

i

g

1

inp g1

ri inp ri

g

2

cmp

i

h Act at least 2 Out Identity rec

j

8j

rc

rec

j

s Act Identity Out Identity del

j

g

1

rec g1

del

j

h Act at least 2 Out Identity cmp

i

8i

d

1

rst

j

rst signal

d

1

h Act at least 1 Out Identity d

2

d

2

h Act at least 1 Out Identity d

3

d

3

h Act at least 1 Out Identity cl

rst

j

h Act at least 1 Out Identity rst self rst

j

rst self

rst signal rec

j

cl h Act at least 1 Out Identity

nc h Act ART1 NC Out Identity

for ARTMAP:

Act ARTMAP NCa,

Act ARTMAP NCb

g

1

h Act at least 2 Out Identity inp g1 cmp

i

8i

rec g1

g

2

h Act at most 0 Out Identity rec

j

8j

cl

ri h Act Product Out Identity inp ri rg

rho ri

rc h Act Identity Out Identity rg

rg h Act less than 0 Out Identity rec

j

8j

rst

j

8j rst signal

cl

rho h Act Identity Out Identity rho

ri rho ri

130 CHAPTER 8. NEURAL NETWORK MODELS AND FUNCTIONS

ARTMAP

site de�nition

site name site function

ARTa G Site at least 1

ARTb G Site at least 1

ARTb rb Site WeightedSum

rho rb Site WeightedSum

npa qu Site Reciprocal

cmpa qu Site WeightedSum

unit de�nition connections

unit top. activation output site target target

name type function function names unit site

map

j

h Act at least 2 Out Identity rm

cl h Act at least 2 Out Identity

nc h Act at least 1 Out Identity

G h Act exactly 1 Out Identity ARTa G map

j

8j

ARTb G

d

1

h Act Identity Out Identity rb ARTb rb

rb h Act Product Out Identity ARTb rb rg

rho rb

rm h Act Identity Out Identity rg

rg h Act less than 0 Out Identity drho

cl

rho h Act Identity Out Identity rho

rb rho rb

qu h Act Product Out Identity inpa qu drho

cmpa qu

drho h Act ARTMAP DRho Out Identity drho

rho

a

inp

a

i

see ART1 table qu inpa qu

cmp

a

i

see ART1 table qu cmpa qu

rec

a

i

see ART1 table G ARTa G

rec

b

i

see ART1 table G ARTb G

del

b

i

see ART1 table d

1

cl

a

see ART1 table cl

cl

b

see ART1 table cl

drho

nc

a

see ART1 table nc

nc

b

see ART1 table nc

rg

a

see ART1 table drho

rho

a

see ART1 table drho

8.11. ART MODELS IN SNNS 131

ART2

unit de�nition connections

unit top. activation output site target target

name type function function names unit site

inp

i

i Act Identity Out Identity w

i

r

i

w

i

h Act ART2 Identity Out Identity x

i

x

i

h Act ART2 NormW signal function

1

v

i

v

i

h Act ART2 Identity Out Identity u

i

u

i

h Act ART2 NormV Out Identity p

i

w

i

p

i

h Act ART2 Identity Out Identity q

i

r

i

rec

j

8j

q

i

h Act ART2 NormP signal function

1

v

i

r

i

h Act ART2 NormIP Out Identity

rec

j

s Act ART2 Rec Out Identity p

i

8i

rst

j

rst

j

h Act ART2 Rst Out Identity rec

j

1

either Out ART2 Noise ContDiff or Out ART2 Noise PLin.

Chapter 9

3D-Visualization of Neural

Networks

9.1 Overview of the 3D Network Visualization

This section presents a short overview over the 3D user interface. The following �gures

show the user interface with a simple three-layer network for the recognition of letters.

The info window is located in the upper left corner of the screen. There, the values of the

units can be displayed and changed. Next to it, the 2D display is placed. This window

is used to create and display the network topology. The big window below is used for

messages from the kernel and the user interface. The remote window in the lower left

corner controls the learning process. Above it, the 3D display is located which shows the

3D visualization of the network. The 3D control window, in the center of the screen, is

used to control the 3D display.

In the upper part, the orientation of the network in space can be speci�ed. The middle

part is used for the selection of various display modes. In SETUP the basic settings can

be selected. With MODEL the user can switch between solid and wireframe model display.

With PROJECT parallel or central projection can be chosen. LIGHT sets the illumination

parameters, while UNITS lets the user select the values for visualizing the units. The display

of links can be switched on with LINKS. RESET sets the network to its initial con�guration.

After a click to FREEZE the network is not updated anymore. The DISPLAY button opens

the 3D-display window and DONE closes it again. In the lower part of the window, the

z-coordinate for the network layers can be set.

Figure 9.1 shows the topology of a letter classi�er as a wireframe model in central projec-

tion. In �gure 9.2 the hidden lines have been removed and the units are illuminated.

Figure 9.3 shows the activation of the units in the network. Since the network is already

trained, unit A shows maximum activation. The other output units are not activated and

are therefore not shown in the 3D-display.

132

9.2. USE OF THE 3D-INTERFACE 133

Figure 9.1: Topology of a network as wire frame model without links

Figure 9.2: Topology of a network as solid model without links

9.2 Use of the 3D-Interface

9.2.1 Structure of the 3D-Interface

The 3D interface consists of three parts:

134 CHAPTER 9. 3D-VISUALIZATION OF NEURAL NETWORKS

Figure 9.3: Network with display of activation

� the 2D ! 3D transformation in the XGUI-display

� the 3D control panel

� the 3D display window

9.2.2 Calling and Leaving the 3D Interface

The 3D interface is called with the GUI button in the info panel. It opens the 3D

Control panel which controls the network display. When the con�guration �le of a three

dimensional network is loaded, the control panel and the display window are opened

automatically, if this was speci�ed in the con�guration. No additional control panel may

be opened if one is already open.

The 3D interface is left by pressing the DONE button in the control panel.

9.2.3 Creating a 3D-Network

9.2.3.1 Concepts

A three dimensional network is created with the network editor in the �rst 2D-display. It

can be created in two dimensions as usual and then changed into 3D form by adding a

z-coordinate. It may as well be created directly in three dimensions.

Great care was given to compatibility aspects on the extension of the network editor.

Therefore a network is represented in exactly the same way as in the 2D case.

9.2. USE OF THE 3D-INTERFACE 135

In the 2D representation each unit is assigned a unique (x, y) coordinate. The di�erent

layers of units lie next to each other. In the 3D representation these layers are to lie on top

of each other. An additional z-coordinate may not simply be added, because this would

lead to ambiguity in the 2D display.

Therefore an (x, y) o�set by which all units of a layer are transposed against their position

in the 2D display has to be computed for each layer. The distance of the layer in height

corresponds to the z value. Only entire layers may be moved, i.e. all units of a layer have

to be in the same z plane, meaning they must have the same z-coordinate. Figure 9.4

explains this behaviour.

AAA
AAA
AAA
AAA
AAA

AA
AA
AA

AA
AA

A
A
A

AAA
AAA
AAA

layer 0 layer 1 layer 2

AAA
AAA

AAA
AAA

AA
AA

layer 0

layer 1

layer 2

not moved

moved by x = -4 units

moved by x = -8 units

(0,0) (8,0)

(9,3)

(1,3,2)

(0,0,2)

(0,5,1)

(0,0,0)

(4,0)

(2,5) (6,5) (10,5)

(2,5,2)

(2,5,1)

(2,5,0)

Figure 9.4: Layers in the 2D- and 3D-display

Therefore the network editor contains two new commands

Units 3d Z : assigning a z-coordinate

Units 3d Move : Moving a z-layer

The event of 3D-creation is easily controlled by rotating the network in the 3D display by

90

�

to be able to see the network sideways. It may be useful to display the z-coordinates

in the XGUI display (see 9.2.3.4).

136 CHAPTER 9. 3D-VISUALIZATION OF NEURAL NETWORKS

The user is advised to create a 3D network �rst as a wireframe model without links for

much faster screen display.

9.2.3.2 Assigning a new z-Coordinate

The desired new z-coordinate may be entered in the setup panel of the 2D-display, or in

the z-value panel of the 3D-control panel. The latter is more convenient, since this panel

is always visible. Values between -32768 and +32767 are legal.

With the mouse all units are selected which are to receive the new z-coordinate.

With the key sequence U 3 Z (for Units 3d Z) the units are assigned the new value.

Afterwards all units are deselected.

9.2.3.3 Moving a z-Plane

From the plane to be moved, one unit is selected as a reference unit in the 2D display.

Then the mouse is moved to the unit in the base layer above which the selected unit is to

be located after the move.

With the key sequence U 3 M (for Units 3d Move) all units of the layer are moved to the

current z-plane.

The right mouse button deselects the reference unit.

9.2.3.4 Displaying the z-Coordinates

The z-values of the di�erent units can be displayed in the 2D-display. To do this, the user

activates the setup panel of the 2D-display with the button SETUP . The button SHOW ,

next to the entry units top opens a menu where zvalue allows the display of the values.

The z-values may also be displayed in the 3D-display. For this, the user selects in the

3D-control panel the buttons UNITS , then TOP LABEL or BOTTOM LABEL and �nally

Z-VALUE . (see also chapter 9.2.4.6)

9.2.3.5 Example Dialogue to Create a 3D-Network

The following example is to demonstrate the rearranging of a normal 2D network for three

dimensional display. As example network, the letter classi�er LETTERS.NET is used.

In the 2D-display, the network looks like in �gure 9.5:

One scales the net with scale - in the transformation panel, then it looks like �gure 9.6

(left). After a rotation with rotate + by 90

�

around the x-axis the network looks like

�gure 9.6 (right).

Now the middle layer is selected in the 2D-display (�gure 9.7, left).

9.2. USE OF THE 3D-INTERFACE 137

Figure 9.5: 2D-display

Figure 9.6: Scaled network (left) and network rotated by 90

�

(right)

138 CHAPTER 9. 3D-VISUALIZATION OF NEURAL NETWORKS

Figure 9.7: Selection of one layer (left) and assigning a z-value (right)

To assign the z-coordinate to the layer, the z-value entry in the 3D-control panel is set

to three. Then one moves the mouse into the 2D-display and enters the key sequence "`U

3 Z"'. This is shown in �gure 9.7 (right).

Now the reference unit must be selected (�gure 9.8, left).

To move the units over the zero plane, the mouse is moved in the XGUI display to the

position x=3, y=0 and the keys "`U 3 M"' are pressed. The result is displayed in �gure 9.8

(right).

Figure 9.8: Selection of a reference unit (left) and moving a plane (right)

The output layer, which is assigned the z-value 6, is treated accordingly. Now the network

9.2. USE OF THE 3D-INTERFACE 139

may be rotated to any position (�gure 9.9, left).

Finally the central projection and the illumination may be turned on (�gure 9.9, right).

Figure 9.9: Wireframe model in parallel projection (left) and solid model in central pro-

jection (right)

These are the links in the wireframe model (�gure 9.10, left).The network with links in

the solid model looks like �gure 9.10 (right).

Figure 9.10: Network with links in the wireframe model (left) and in the solid model

(right)

140 CHAPTER 9. 3D-VISUALIZATION OF NEURAL NETWORKS

9.2.4 3D-Control Panel

Figure 9.11: Control Panel

The 3D-control panel is used to control the display panel. It consists of four sections

(panel):

1. the transformation panels

� rotate: rotates the 3D-display along the x-, y- or z-axis

� trans: transposes the 3D-display along the x-, y- or z-axis

� scale: scales the 3D-display

2. the command panel with the buttons

� SETUP : basic settings like rotation angles are selected

� MODEL : switch between solid model and wireframe model

� PROJECT : selects parallel or central projection

� LIGHT : chooses lighting parameter

� UNITS : selects various unit display options

� LINKS : selects link display options

� RESET : resets all 3D settings to their original values

� FREEZE : freezes the 3D-display

3. the panel with the buttons

� DISPLAY : opens the 3D-display (max. one)

� DONE : closes the 3D-display window and the 3D-control window and exits the

3D visualization component

4. the z-value panel: used for input of z-values either directly or incrementally with the

arrow buttons

9.2. USE OF THE 3D-INTERFACE 141

9.2.4.1 Transformation Panels

With the transformation panels, the position and size of the network can be controlled.

In the rotate panel, the net is rotated around the x-, y-, or z-axis. The + buttons rotate

clockwise, the - buttons counterclockwise. The center �elds X, Y and Z are no buttons

but framed in similar way for pleasant viewing.

In the trans panel, the net is moved along the x-, y-, or z-axis. The + buttons move

to the right, the - buttons to the left. The center �elds X, Y and Z are no buttons but

framed in similar way for pleasant viewing.

In the scale panel, the net can be shrunk or enlarged.

9.2.4.2 Setup Panel

Figure 9.12: Setup Panel

In the base column of the setup panel, the transformation parameters can be set explicitly

to certain values. The rotation angle is given in degrees as a nine digit oat number, the

transposition is given in pixels, the scale factor relative to 1. Upon opening the window,

the �elds contain the values set by the transformation panels, or the values read from the

con�guration �le. The default value for all �elds is zero. The net is then displayed just as

in the 2D-display.

In the step column the step size for the transformations can be set. The default for

rotation is ten degrees, the default for moving is 10 pixel. The scaling factor is set to 1.1.

In the aspect �eld the ratio between edge length of the units and distance between units

is set. Default is edge length equals distance.

142 CHAPTER 9. 3D-VISUALIZATION OF NEURAL NETWORKS

With links the scale factor for drawing links can be set. It is set to 1.0 by default.

The DONE button closes the panel and redraws the net.

9.2.4.3 Model Panel

In the model panel the representation of the units is set. With the WIRE button a wire

frame model representation is selected. The units then consist only of edges and appear

transparent.

The SOLID button creates a solid representation of the net. Here all hidden lines are

eliminated. The units' surfaces are shaded according to the illumination parameters if no

other value determines the colour of the units.

When the net is to be changed, the user is advised to use the wire frame model until the

desired con�guration is reached. This speeds up the display by an order of magnitude.

9.2.4.4 Project Panel

Figure 9.13: Model Panel (left) and Project Panel (right)

Here the kind of projection is selected.

PARALLEL selects parallel projection, i.e. parallels in the original space remain parallel.

CENTRAL selects central projection, i.e. parallels in original original space intersect in the

display.

With the Viewpoint �elds, the position of the viewer can be set. Default is the point

(0, 0, -1000) which is on the negative z-axis. When the viewer approaches the origin the

network appears more distorted.

9.2.4.5 Light Panel

In the light panel, position and parameters of the light source can be set. The �elds

Position determine the location of the source. It is set to (0, 0, -1000) by default, which

is the point of the viewer. This means that the net is illuminated exactly from the front.

A point in positive z-range is not advisable, since all surfaces would then be shaded.

9.2. USE OF THE 3D-INTERFACE 143

Figure 9.14: Light Panel

With the Ambient Light �elds, the parameters for the background light are set.

Intensity sets the intensity of the background brightness.

Reflection is the reection constant for the background reection. (0 � Ref. � 1)

The �elds Diffuse Light determine the parameters for di�use reection.

Intensity sets the intensity of the light source.

Reflection is the reection constant for di�use reection. (0 � Ref. � 1)

9.2.4.6 Unit Panel

With the unit panel the representation of the units can be set. The upper part shows the

various properties that can be used to display the values:

� SIZE : a value is represented by the size of the unit. The maximum size is de�ned

by the Aspect �eld in the setup panel. Negative and small positive values are not

displayed.

� COLOR : a value is represented by the color of the unit. A positive value is displayed

green, a negative red. This option is available only on color terminals.

� TOP LABEL : a value is described by a string in the upper right corner of the unit.

� BOTTOM LABEL : a value is described by a string in the lower right corner of the

unit.

In the lower part the type of the displayed value, selected by a button in the upper part,

can be set. It is displayed by

144 CHAPTER 9. 3D-VISUALIZATION OF NEURAL NETWORKS

Figure 9.15: Unit Panel (left) and Link Panel (right)

� ACTIVATION : the current activation of the unit.

� INITIAL ACT. : the initial activation of the unit.

� OUTPUT : the output value of the unit.

� BIAS : the threshold of the unit.

� NAME : the name of the unit.

� NUMBER : the number of the unit.

� Z-VALUE : the z-coordinate of the unit.

� NOTHING : no value.

The options NAME, NUMBER and Z-value can be used only with the top or bottom label. The

other values can be combined freely, so that four values can be displayed simultaneously.

9.2.4.7 Links Panel

In the links panel the representation of the links can be switched on and o� with the

buttons ON and OFF . The button COLOR forces color representation of the links (only

with color monitors), and the button LABEL writes the weights of the links in the middle.

In the fonts part of the panel, the fonts for labeling the links can be selected. The button

SMALL activates the 5� 8 font, the button BIG the 8� 14 font

9.2. USE OF THE 3D-INTERFACE 145

9.2.4.8 Reset Button

With the RESET button the values for moving and rotating are set to zero. The scaling

factor is set to one.

9.2.4.9 Freeze Button

The FREEZE button keeps the network from being redrawn.

9.2.5 3D-Display Window

In the display window the network is shown. It has no buttons, since it is fully controlled

by the control panel. It is opened by the DISPLAY button of the control panel. When

the control panel is closed, the display window is closed as well.

Figure 9.16: Display Window

Note that the 3D-display is only a display window, while the 2D-display windows have a

graphical editor integrated.

Chapter 10

Running SNNS as Batch Job

Since training a neural network may require several hours of CPU time, it is advisable

to perform this task as a batch job during low usage times. SNNS o�ers the program

snnsbat for this purpose. It is basically an additional interface to the kernel that allows

easy background execution. Its exible setup allows for a variety of possible execution

modes which can be easily de�ned in a con�guration �le. All actions and messages are

recorded in a log �le for later veri�cation of results.

10.1 The Snnsbat Environment

snnsbat runs very dependable even on instable system con�gurations and is secured

against data loss due to system crashes, network failures etc.. On UNIX based systems

the program may be terminated with the command 'kill -15' without loosing the currently

computed network.

The calling syntax of snnsbat is:

snnsbat [< con�guration �le > [< log �le >]]

This call starts snnsbat in the foreground. On UNIX systems the command for back-

ground execution is `at', so that the command line

echo 'snnsbat default.cfg log.�le' j at 22:00

would start the program tonight at 10pm

1

.

If the optional �le names are omitted, snnsbat tries to open the con�guration �le `./snns-

bat.cfg' and the protocol �le `./snnsbat.log'.

10.2 Using Snnsbat

The batch mode execution of SNNS is controlled by the con�guration �le. It contains

entries that de�ne the network and parameters required for program execution. These

1

This construction is necessary since `at' can read only from stdin.

146

10.2. USING SNNSBAT 147

entries are tuples (mostly pairs) of a keyword followed by one or more values. There is

only one tuple allowed per line, but lines may be separated by an arbitrary number of

comment lines. Comments start with the number sign '#'. The set of given tuples specify

the actions performed by SNNS in one execution run. An arbitrary number of execution

runs can be de�ned in one con�guration �le, by separating the tuple sets with the keyword

'PerformActions:'. Within a tuple set, the tuples may be listed in any order. If a tuple is

listed several times, values that are already read are overwritten. The only exception is

the key 'Type:', which has to be listed only once and as the �rst key. If a key is omitted,

the corresponding value(s) are assigned a default.

Here is a listing of the tuples and their meaning:

Key Value Meaning

InitFunction: <string> Name of the initialization function.

InitParam: <oat> � � � 'NoOfInitParam' parameters for the ini-

tialization function, separated by blanks.

LearnParam: <oat> � � � 'NoOfLearnParam' parameters for the

learning function, separated by blanks.

LearnPatternFile: <string> Filename of the learning patterns.

MaxErrorToStop: <oat> Network error when learning can be

halted.

MaxLearnCycles: <int> Maximum number of learning cycles to be

executed.

NetworkFile: <string> Filename of the net to be trained.

NoOfInitParam: <int> Number of parameters for the initializa-

tion function.

NoOfLearnParam: <int> Number of parameters for the learning

function.

PerformActions: none Execution run separator.

ResultFile: <string> Filename of the result �le.

ResultIncludeInput: [YES j NO] Flag for inclusion of input patterns in the

result �le.

ResultIncludeOutput: [YES j NO] Flag for inclusion of output learning pat-

terns in the result �le.

ResultMinMaxPattern: <int> <int> Number of the �rst and last pattern to be

used for result �le generation.

Shu�e: [YES j NO] Flag for pattern shu�ing.

TestPatternFile: <string> Filename of the test patterns.

TrainedNetworkFile: <string> Filename where the net should be stored

after training / initialization.

Type: <string> The type of grammar that corresponds to

this �le. Valid types are:

'SNNSBATCH 1': performs only one exe-

cution run.

'SNNSBATCH 2': performs multiple exe-

cution runs.

148 CHAPTER 10. RUNNING SNNS AS BATCH JOB

Please note the mandatory colon after each key and the upper case of several letters.

snnsbat may also be used to perform only parts of a regular network training run. If the

network is not to be initialized, training is not to be performed, or no result �le is to be

computed, the corresponding entries in the con�guation �le can be omitted.

For all keywords the string '<OLD>' is also a valid value. If <OLD> is speci�ed, the value

of the previous execution run is kept. For the keys 'NetworkFile:' and 'LearnPatternFile:'

this means, that the corresponding �les are not read in again. The network (patterns)

already in memory are used instead, thereby saving considerabe execution time. This

allows for a continous logging of network performance. The user may, for example, load a

network and pattern �le, train the network for 100 cycles, create a result �le, train another

100 cycles, create a second result �le, and so forth. Since the error made by the current

network in classifying the patterns is reported in the result �le, the series of result �les

document the improvement of the network performance.

The following table shows the behavior of the program caused by omitted entries:

missing key resulting behavior

InitFunction: The net is not initialized.

InitParam: Initialization function gets only zero values as parameters.

LearnParam: Learning function gets only zero values as parameters.

LearnPatternFile: Abort with error message if more than 0 learning cycles are

speci�ed. Initialization can be performed if init function

does not require patterns.

MaxErrorToStop: Training runs for 'MaxLearnCycles:' cycles.

MaxLearnCycles: No training takes place.

NetworkFile: Abort with error message.

NoOfInitParam: No parameters are assigned to the initialization function.

Error message from the SNNS kernel possible.

NoOfLearnParam: No parameters are assigned to the learning function. Error

message from the SNNS kernel possible.

PerformActions: Only one execution run is performed. Repeated keywords

lead to deletion of older values.

ResultFile: No result �le is generated.

ResultIncludeInput: The result �le does NOT contain input Patterns.

ResultIncludeOutput: The result �le DOES contain learn output Patterns.

ResultMinMaxPattern: All patterns are propagated.

Shu�e: Patterns are not shu�ed.

TestPatternFile: Result �le generation uses the learning patterns. If they are

not speci�ed either, the program is aborted with an error

message when trying to generate a result �le.

TrainedNetworkFile: Network is not saved after training / initialization. It is

used, however, for result �le generation.

Type: Abort with error message.

10.2. USING SNNSBAT 149

Here is a typical example of a con�guration �le:

#

Type: SNNSBATCH_2

#

If a key is given twice, the second appearence is taken.

Keys that are not required for a special run may be omitted.

If a key is ommited but required, a default value is assumed.

The lines may be separated with comments.

#

Please note the mandatory file type specification at the begining and

the colon follwing the key.

#

###

NetworkFile: /home/SNNSv3.0/examples/letters.net

#

InitFunction: Randomize_Weights

NoOfInitParam: 2

InitParam: -1.0 1.0

#

LearnPatternFile: /home/SNNSv3.0/examples/letters.pat

NoOfLearnParam: 2

LearnParam: 0.8 0.3

MaxLearnCycles: 100

MaxErrorToStop: 1

Shuffle: YES

#

TrainedNetworkFile: trained_letters.net

ResultFile: letters1.res

ResultMinMaxPattern: 1 26

ResultIncludeInput: NO

ResultIncludeOutput: YES

#

#This execution run loads a network and pattern file, initializes the

#network, trains it for 100 cycles (or stops, if then error is less

#than 0.01), and finally computes the result file letters1.

PerformActions:

#

NetworkFile: <OLD>

#

LearnPatternFile: <OLD>

NoOfLearnParam: <OLD>

LearnParam: <OLD>

MaxLearnCycles: 100

MaxErrorToStop: 1

Shuffle: YES

#

ResultFile: letters2.res

ResultMinMaxPattern: <OLD>

ResultIncludeInput: <OLD>

ResultIncludeOutput: <OLD>

#

#This execution run continues the training of the already loaded file

#for another 100 cycles before creating a second result file.

#

PerformActions:

#

150 CHAPTER 10. RUNNING SNNS AS BATCH JOB

NetworkFile: <OLD>

#

LearnPatternFile: <OLD>

NoOfLearnParam: <OLD>

LearnParam: 0.2 0.3

MaxLearnCycles: 100

MaxErrorToStop: 0.01

Shuffle: YES

#

ResultFile: letters3.res

ResultMinMaxPattern: <OLD>

ResultIncludeInput: <OLD>

ResultIncludeOutput: <OLD>

TrainedNetworkFile: trained_letters.net

#

#This execution run concludes the training of the already loaded file.

#After another 100 cycles of training with changed learning

#parameters the final network is saved to a file and a third result

#file is created.

#

The �le <log �le> collects the SNNS kernel messages and contains statistics about running

time and speed of the program. An example protocol �le is listed in appendix C.

If the <log �le> command line parameter is omitted, snnsbat opens the �le `snnsbat.log'

in the current directory. To limit the size of this �le, a maximum of 100 learning cycles

are logged. This means, that for 1000 learning cycles a message will be written to the �le

every 10 cycles.

If the time required for network training exceeds 30 minutes of CPU time, the network is

saved. The log �le then shows the message:

Temporary network file 'SNNS_Aaaa00457' created.

Temporay networks always start with the string `SNNS '. After 30 more minutes of CPU

time, snnsbat creates a second security copy. Upon normal termination of the program,

these copies are deleted from the current directory. The log �le then shows the message:

Temporary network file 'SNNS_Aaaa00457' removed.

In an emergency (powerdown, kill, alarm, etc.), the current network is saved by the pro-

gram. The log �le, resp. the mailbox, will later show an entry like:

Signal 15 caught, SNNS V3.0 Batchlearning terminated.

SNNS V3.0 Batchlearning terminated at Tue Mar 23 08:49:04 1993

System: SunOS Node: matisse Machine: sun4m

Networkfile './SNNS BAAa02686' saved.

Logfile 'snnsbat.log' written.

10.3. CALLING SNNSBAT 151

10.3 Calling Snnsbat

snnsbat may be called interactively or in batch mode. It was designed, however, to be

called in batch mode. On Unix machines, the command `at' should be used, to allow

logging the program with the mailbox. However, `at' can only read from standard input,

so a combination of `echo' and `pipe' has to be used.

Three short examples for Unix are given here, to clarify the calls:

unix>echo 'snnsbat mybatch.cfg mybatch.log' j at 21:00 Friday

starts snnsbat next Friday at 9pm with the parameters given in mybatch.cfg and writes

the output to the �le mybatch.log in the current directory.

unix>echo 'snnsbat SNNScon�g1.cfg SNNSlog1.log' j at 22

starts snnsbat today at 10pm

unix>echo 'snnsbat' j at now + 2 hours

starts snnsbat in 2 hours and uses the default �les snnsbat.cfg and snnsbat.log

The executable is located in the directory `.../SNNSv3.0/kernel/bin/<machine type>/'.

The sources of snnsbat can be found in the directory `.../SNNSv3.0/kernel/sources/'.

An example con�guration �le was placed in `.../SNNSv3.0/examples'.

Chapter 11

Design of the Simulator Kernel

11.1 Network Model of the Simulator

The network model, on which the simulator kernel is based, was designed to accommodate

many network types. An important feature of the kernel is the complete encapsulation of

all internal data structures and the e�cient memory management.

The network model of the simulator kernel has the following properties:

� each unit has an arbitrary, user de�nable

{ activation function which takes the network input, the present activation, and

the threshold to compute the new activation.

{ output function which computes the output value from the activation of the

unit.

� each unit has an arbitrary number (possibly zero) of inputs which can be de�ned by

the user. These so called sites have separate user de�nable input functions.

� sites may have an arbitrary number of connections from other units. A recurrent

connection to the unit itself is possible.

11.2 Design Factors

The goal in designing the simulator kernel was to meet the following speci�cations:

� representation of a universal network model for small to medium sized networks (10

4

units, 10

6

connections)

� interactive manipulation of the net by the user

� encapsulation of all internal data structures with proper interfaces

� extendability

152

11.2. DESIGN FACTORS 153

� very high e�ciency

� modularity

� portability

The size of the networks that can be handled by the kernel is limited only by the size of

(virtual) memory and the address space of the computer used. The simulator memory

management relieves the operating system (UNIX), especially with larger nets. In in-

teractive mode, the user has some powerful commands at hand to create and manipulate

networks. These interface functions reduce the complex internal representation of the data

to a representation at the logical network level.

Naturally, the demands of encapsulation and e�ciency contradict each other. Neverthe-

less, a good compromise has been found: the functions, that can be de�ned by the user

(activation and site functions)may be used with a macro library to access the kernel struc-

tures. This principle makes the combination of tight encapsulation and high execution

speed possible. Measurements on several computer systems yielded the following propa-

gation rates:

Machine type Operating System Propagations Weight Updates

connections/sec. conn. updates/sec.

(CPS) (CUPS)

Intel 80486-33 Linux 453.000 194.000

DECserver 5400 Ultrix V4.2 398.000 175.000

DECstation 2100 Ultrix V4.2 494.000 211.000

DECstation 3100 Ultrix V4.2 689.000 287.000

DECstation 5000/200 Ultrix V4.2 733.000 248.000

SUN 3/60 SUN-OS 4.1.1 120.000 42.000

SUN SPARCstation ELC SUN-OS 4.1.1 791.000 334.000

SUN SPARCstation 2 SUN-OS 4.1.1 950.000 415.000

SUN SPARCstation 10 SUN-OS 4.1.1 950.000 415.000

IBM RS 6000/320 AIX V.3.1 1.998.000 773.000

IBM RS 6000/320H AIX V.3.1 2.207.000 814.000

HP 9000/720 HP-UX 8.07 1.707.000 764.000

HP 9000/730 HP-UX 8.07 2.147.000 1.093.000

The propagation rate measures the speed of the simulator in recall mode, i.e. the forward

propagation rate. In this mode no weight updates take place. The usual measurement

unit is connections/sec (CPS).

The weight update rate measures the speed of the training of a fully connected feedforward

network trained with 'vanilla` (on line) backpropagation. Because there is a forward

propagation, a backward propagation and a weight update phase for every pattern in each

cycle, the weight update rates, measured in connection updates/sec. (CUPS) are usually

lower by a factor of between 2 and 3 than the propagation rates.

These performance numbers have been obtained on machines running in our lab during

normal use, with other users on the machines, with di�erent main memory sizes and with

the SNNS home directory mounted via NFS over the ethernet. Therefore, these numbers

should only be regarded as performance indicators of SNNS but may not be quoted as

154 CHAPTER 11. DESIGN OF THE SIMULATOR KERNEL

machine architecture benchmarks.

The use of simulators for neural nets almost demands the use of parallel computers like

the Connection Machine CM-2 [Hil85, HS86a, HS86b] or the MasPar MP-1, because of the

inherent parallelism of the algorithm. The use of parallel computers will therefore surely

increase the above values.

11.3 Layer Model of the Simulator Kernel

The simulator kernel is internally structured in three layers. Each higher layer represents

a higher level of abstraction and is based on the layers below.

� The bottom layer is the SNNS memory management. It sits on top of the Unix

memory management and o�ers functions to allocate and free data structures for

the layer above.

� The next layer contains all functions to operate on, and to modify the network as

well as propagation functions.

� The interface functions for the graphical user interface are located in the topmost

layer.

� In the same layer as the function interface, there exists a �le interface to the Nessus

compiler.

In chapter 12 the data structures are described in detail. The description of the compiler

interface can be found in appendix A.

Chapter 12

Internal Data Structures

The kernel needs numerous data structures to administer and display the network. The

kernel has to display the units, links and sites (the static component), and to save the

functions and connection weights of the units (the dynamic component). A symbol table

is used to handle all the names and types associated with the units which are de�ned by

the user. The allocation of data structures is done in large blocks of several hundred or

even thousands of single structure components. This chapter describes all the relevant

data types in detail.

12.1 Unit Array

The units and all their components are stored in the unit array. The data type `array' was

selected for storing the units, because of its short access time. When the array is �lled

up by requests from the user interface, the memory management automatically requests

a new, bigger array from the operating system. The pointers to the structure components

are reallocated, and the old empty array is returned to the operating system.

Each element of the unit array has the following components:

� Out stores the output value of the unit

� ags contains information for the memory management and the topological type of

the unit (see chapter12.6)

� lun the logical unit number

� lln the logical number of the layer the unit belongs to

� *ftype entry points to the internal representation of the unit type, if a prototype

exists for this unit

� Aux saves temporary values needed by internal kernel functions (e.g. backpropaga-

tion and topological sort)

� TD saves values needed for time delay networks

155

156 CHAPTER 12. INTERNAL DATA STRUCTURES

Unit Array

Aux

*Ftype_entry

flags

*Ftype_entry *Ftype_entry

flags

TD TD

Out

bias

i_act

act

bias

i_act

act

Aux

flags

bias

i_act

act

Out

delta

actbuf

delta

actbuf

*to*to*to

*to

*

weight

weight

*next

weight

*next

*

*site_table

*links

subnet_no

*unit_name

*out_func

subnet_no

*unit_name

*out_func

*

NULL

*next

weight

weight

*next*next

NULL

Link Arrays

Site Arrays

to source unit

weight

*to

*next

*sites

unit_pos

layer_no

subnet_no

*unit_name

*act_func

*out_func

*sites

unit_pos

layer_no

*act_func

*to

weight

*to

NULL

to source unit

*links

*site_table

*next

*links

*site_table

*next

*next

*to

*to

weight

*next

*to

*next

*next

NULL

Figure 12.1: Internal network data structures (simpli�ed)

12.2. SITES 157

� act contains the activation of the unit

� i act saves the initial activation, used to reset the net

� bias contains the threshold of the unit

� value a, value b, value c general purpose elements for the learning functions

� olddelta, newdelta error values in recurrent networks

� actbuf an array for storage of 10 miscellaneous values

� *out func points to the output function

� *act func points to the activation function

� *act deriv func points to the derivation function of the activation function

� *unit name points to the unit name, a string in the symbol table

� subnet no contains subnet membership information

� layer no contains the location of the unit in a multilayer network

� unit pos stores the position of the unit in the network

� *sites points to a linked structure of input functions or connections

The internal representation of the network is displayed in �gure 12.1.

12.2 Sites

The site data structure was designed to handle the input functions of the unit. The sites

are constructed as a linear linked list. Several sites are grouped in an array (site array),

each containing several hundred sites. The site arrays are also connected by a linked list.

Thereby, empty, no longer needed, arrays can be freed.

The internal representation of a site has three components:

� *links is a pointer to the input connections (links) of the site.

� *site table is a pointer to the so called site table. The site table contains information

about the input function and the name of the site.

� *next points to the next site of the unit. The list is terminated by NIL.

12.3 Links

The links make up the connections of the units. The direction of the internal pointers of

the link data structure is from the target unit (destination unit) to the source unit (origin

unit). Note that this is reversed from the direction of the links in the neural network

(which run from source to target unit). This approach allows the e�cient storage of the

158 CHAPTER 12. INTERNAL DATA STRUCTURES

*site_table

*links

*site_table

*links

*links

*site_table

*

NULL

*next*next*next

*next*next*next

*next*next*next

from unit

to link structures

to link structures

to link structures

Figure 12.2: Site list

network structure with a minimum of memory. However, the memory needed to store big

nets is still the limiting factor. For a net with 10.000 units with a connectivity of 20%, 20

million connections have to be stored, requiring 230 megabyte of memory. In comparison,

the fraction of the memory used to store all other components is negligible.

The structure of a link is quite similar to that of a site:

� *to points to the source unit of the link.

� weight contains the connection weight.

� value a, value b, value c general purpose elements for the learning functions

� *next points to the next connection of the same target unit (terminated by NIL).

Like sites, the links are grouped in linked arrays which are handled by the SNNS memory

management routines.

12.4 Network Memory Management

When a network is loaded or constructed interactively, the memory management always

has to supply enough units. As already mentioned, the user doesn't have to care about

memory allocation and deallocation. During the interactive manipulation of the net, the

user can change or delete whole parts of the net. The empty components are grouped in

a linked free storage list for later reuse. This is also true for tables like the symbol table.

There, identical names (identi�ers) are stored only once. A reference counter decides

12.5. UNIT FLAGS 159

*next

weight

*next

weight

*to

*next

weight

weight

*next

*to

weight

*next

weight

*next

NULL

*to

**to

*to

*to*to

*next

weight

*next

weight

*to

*next

weight

to source unit

to source unit

to source unit

from unit or site

Figure 12.3: Link list

whether an entry can be freed on a delete operation or not. An exhaustive garbage

collection is performed when the whole net is deleted.

12.4.1 Link/Site Arrays

The memory management is presented in �gure 12.4 with the example of link arrays. Each

�rst entry is used for backward links. The data structure of site arrays is similar.

12.4.2 Symbol Table

The symbol table administers the identi�ers of the units, sites and unit prototypes. An

entry in the table is deleted when the reference counter is zero. Figure 12.5 shows the

symbol table with linked empty entries.

12.5 Unit Flags

The simulator computes the topological position (topological type) and the current state

of the unit with the help of the unit ags. The topological type is important for the

teaching and propagation algorithms. With certain status bits, the state of the unit in

the network is checked. The ags are stored as bit patterns in the unit array. Figure 12.6

shows the correspondence between bits and ags of the unit entry.

160 CHAPTER 12. INTERNAL DATA STRUCTURES

pointer to next free link

(terminated by NULL)

Link Block

NULL

*next

weight

*to

Link

Link

Link

Link

Link Link

Link

Link

Link

Link Link

Link

Link

last block

pointer to
free block

pointer to

pointer to
valid link

Figure 12.4: Link arrays

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Entry

Name Table Block

NULL

ref_count

sym_type

*symbol pointer to

last block

pointer to

free entry

pointer to

last valid entry

pointer to next free entry

(terminated by NULL)

Figure 12.5: Symbol table

12.5. UNIT FLAGS 161

type of the unit

indicates topological

unit is not activated

unit is activated

unit input is not evaluated

unit input is evaluated

unit type is unknown

unit type is INPUT

unit type is OUTPUT

unit type is DUAL

unit type is HIDDEN

unit type is SPECIAL

unit has no inputs

unit has no sites

unit has direct inputs

---not used---

101112131415

00

10

1 0

1 1

0

1

0

1

000

100

010

110

01

101

0

00

10

01

1

0123456789

unit has direct input links

unit has sites

indicates wether net input evaluated

indicates active unit

indicates memory allocation

indicates wether unit is activated

unit is not used, is in free space list

unit is used but not initialized

---not used---

unit is used and initalized

Figure 12.6: Unit ags

162 CHAPTER 12. INTERNAL DATA STRUCTURES

12.6 Function Table

The various site and unit functions are stored in the function table. The user can de�ne

his own functions in form of a C program. Information about these functions (name, type)

is stored in a table, to give the kernel access to and use of these functions.

*func_name *functionfunc_type

*func_name *functionfunc_type

"Sigmoid_Function"

ACT_Logistic(unit_ptr)

{

register FlintType sum;

 sum = 0.0;

 do

 sum += GET_WEIGHTED_OUTPUT

 while(GET_NEXT_LINK);

. . .

Function Table

user definable activation function

String

Figure 12.7: Function table

Chapter 13

Kernel Function Interface

13.1 Overview

The simulator kernel o�ers a variety of functions for the creation and manipulation of

networks. These can roughly be grouped into the following categories:

� functions to manipulate the network

� functions to determine the structure of the network

� functions to de�ne and manipulate cell prototypes

� functions to propagate the network

� learning functions

� functions to manipulate patterns

� functions to load and save the network and pattern �les

� functions for error treatment, search functions for names, functions to change default

values etc.

The following paragraphs explains the interface functions in detail. All functions of this

interface between the kernel and the user interface carry the pre�x krui : : : (kernel user

interface functions).

Additionally there are some interface functions which are useful to build applications for

ART networks. These functions carry the pre�x artui : : : (ART user interface functions).

13.2 Unit Functions

The following functions are available for manipulation of the cells and their components:

krui_getNoOfUnits()

krui_getFirstUnit()

163

164 CHAPTER 13. KERNEL FUNCTION INTERFACE

krui_getNextUnit()

krui_setCurrentUnit(int UnitNo)

krui_getCurrentUnit()

krui_getUnitName(int UnitNo)

krui_setUnitName(int UnitNo, char *unit_name)

krui_searchUnitName(char *unit_name)

krui_searchNextUnitName(void)

krui_getNoOfTTypeUnits()

krui_getUnitOutFuncName(int UnitNo)

krui_setUnitOutFunc(int UnitNo, char *unitOutFuncName)

krui_getUnitActFuncName(int UnitNo)

krui_setUnitActFunc(int UnitNo, char *unitActFuncName)

krui_getUnitFTypeName(int UnitNo)

krui_getUnitActivation(int UnitNo)

krui_setUnitActivation(int UnitNo, FlintType unit_activation)

krui_getUnitInitialActivation(int UnitNo)

krui_setUnitInitialActivation(int UnitNo, FlintType unit_i_activation)

krui_getUnitOutput(int UnitNo)

krui_setUnitOutput(int UnitNo, FlintType unit_output)

krui_getUnitBias(int UnitNo)

krui_setUnitBias(int UnitNo, FlintType unit_bias)

krui_getUnitSubnetNo(int UnitNo)

krui_setUnitSubnetNo(int UnitNo, int subnet_no)

krui_getUnitLayerNo(int UnitNo)

krui_setUnitLayerNo(int UnitNo, unsigned short layer_bitField)

krui_getUnitPosition(int UnitNo, struct PosType *position)

krui_setUnitPosition(int UnitNo, struct PosType *position)

krui_getUnitNoAtPosition(struct PosType *position, int subnet_no)

krui_getUnitNoNearPosition(struct PosType *position, int subnet_no,

int range, int gridWidth)

krui_getXYTransTable(struct TransTable * *xy_trans_tbl_ptr)

krui_getUnitCenters(int unit_no, int center_no,

struct PositionVector * *unit_center)

krui_setUnitCenters(int unit_no, int center_no,

struct PositionVector *unit_center)

krui_getUnitTType(int UnitNo)

krui_setUnitTType(int UnitNo, int UnitTType)

krui_freezeUnit(int UnitNo)

krui_unfreezeUnit(int UnitNo)

krui_isUnitFrozen(int UnitNo)

krui_getUnitInputType(UnitNo)

krui_createDefaultUnit()

krui_createUnit(char *unit_name, char *out_func_name,

char *act_func_name, FlintType act,

FlintType i_act, FlintType out,

FlintType bias)

krui_createFTypeUnit(char *FType_name)

13.2. UNIT FUNCTIONS 165

krui_setUnitFType(int UnitNo, char *FTypeName)

krui_copyUnit(int UnitNo, int copy_mode)

krui_deleteUnitList(int no_of_units, int unit_list[])

13.2.1 Unit Enquiry and Manipulation Functions

int krui_getNoOfUnits()

determines the number of units in the neural net.

int krui_getFirstUnit()

Many interface functions refer to a current unit or site. krui_getFirstUnit() selects the

(chronological) �rst unit of the network and makes it current. If this unit has sites, the

chronological �rst site becomes current. The function returns 0 if no units are de�ned.

int krui_getNextUnit()

selects the next unit in the net, as well as its �rst site (if present); returns 0 if no more

units exist.

krui_err krui_setCurrentUnit(int UnitNo)

makes the unit with number UnitNo current unit; returns an error code if no unit with

the speci�ed number exists.

int krui_getCurrentUnit()

determines the number of the current unit (0 if not de�ned)

char *krui_getUnitName(int UnitNo)

krui_err krui_setUnitName(int UnitNo, char *unit_name)

determines/sets the name of the unit. krui setUnitName returns NULL if no unit with

the speci�ed number exists.

krui_err krui_searchUnitName(char *unit_name)

searches for a unit with the given name. Returns the �rst unit number if a unit with the

given name was found, 0 otherwise; returns an error code if no units are de�ned.

krui_err krui_searchNextUnitName(void)

searches for the next unit with the given name. Returns the next unit number if a unit

with the given name was found, 0 otherwise. krui_searchUnitName(unit_name) has

to be called before at least once, to con�rm the unit name. Returns error code if no units

are de�ned.

char *krui_getUnitOutFuncName(int UnitNo)

char *krui_getUnitActFuncName(int UnitNo)

determines the output function resp. activation function of the unit.

krui_err krui_setUnitOutFunc(int UnitNo, char *unitOutFuncName)

krui_err krui_setUnitActFunc(int UnitNo, char *unitActFuncName)

sets the output function resp. activation function of the unit. Returns an error code if

166 CHAPTER 13. KERNEL FUNCTION INTERFACE

the function name is unknown, i.e. if the name does not appear in the function table as

output or activation function. The f-type of the unit is deleted.

char *krui_getUnitFTypeName(int UnitNo)

yields the f-type of the unit; returns NULL if the unit has no prototype.

FlintType krui_getUnitActivation(int UnitNo)

void krui_setUnitActivation(int UnitNo, FlintType unit_activation)

returns/sets the activation of the unit.

FlintType krui_getUnitInitialActivation(int UnitNo)

void krui_setUnitInitialActivation(int UnitNo,

FlintType unit_i_activation)

returns/sets the initial activation of the unit, i.e. the activation after loading the net. See

also krui_resetNet().

FlintType krui_getUnitOutput(int UnitNo)

void krui_setUnitOutput(int UnitNo, FlintType unit_output)

returns/sets the output value of the unit.

FlintType krui_getUnitBias(int UnitNo)

void krui_setUnitBias(int UnitNo, FlintType unit_bias)

returns/sets the bias (threshold) of the unit.

int krui_getUnitSubnetNo(int UnitNo)

void krui_setUnitSubnetNo(int UnitNo, int subnet_no)

returns/sets the subnet number of the unit (the range of subnet numbers is -32736 to

+32735).

unsigned short krui_getUnitLayerNo(int UnitNo)

void krui_setUnitLayerNo(int UnitNo,

unsigned short layer_bitField)

returns/sets the layer number (16 Bit integer).

void krui_getUnitPosition(int UnitNo, struct PosType *position)

void krui_setUnitPosition(int UnitNo, struct PosType *position)

returns/sets the (graphical) position of the unit. See also include �le glob_typ.h for the

de�nition of PosType.

int krui_getUnitNoAtPosition(struct PosType *position, int subnet_no)

yields the unit number of a unit with the given position and subnet number; returns 0 if

no such unit exists.

int krui_getUnitNoNearPosition(struct PosType *position,

int subnet_no, int range,

int gridWidth)

yields a unit in the surrounding (de�ned by range) of the given position with the given

graphic resolution gridWidth; otherwise like krui_getUnitNoAtPosition(...).

krui_err krui_getUnitCenters(int unit_no, int center_no,

struct PositionVector * *unit_center)

13.2. UNIT FUNCTIONS 167

returns the 3D-transformation center of the speci�ed unit and center number. Function

has no e�ect on the current unit. Returns error number if unit or center number is invalid

or if the SNNS-kernel isn't a 3D-kernel.

krui_err krui_setUnitCenters(int unit_no, int center_no,

struct PositionVector *unit_center)

sets the 3D-transformation center and center number of the speci�ed unit. Function has

no e�ect on the current unit. Returns error number if unit or center number is invalid or

if the SNNS-kernel isn't a 3D-kernel.

krui_err krui_getXYTransTable(struct TransTable * *xy_trans_tbl_ptr)

returns the base address of the XY-translation table. Returns error code if the SNNS-

kernel isn't a 3D-kernel.

int krui_getUnitTType(int UnitNo)

krui_err krui_setUnitTType(int UnitNo, int UnitTType)

gets/sets the IO-type

1

(i.e. input, output, hidden) of the unit. See include �le glob_typ.h

for IO-type constants. Set yields an error code if the IO-type is invalid.

void krui_freezeUnit(int UnitNo)

freezes the output and the activation value of the unit, i.e. these values are not updated

anymore.

void krui_unfreezeUnit(int UnitNo)

switches the computation of output and activation values on again.

bool krui_isUnitFrozen(int UnitNo)

yields TRUE if the unit is frozen, else FALSE.

int krui_getUnitInputType(UnitNo)

yields the input type. There are three kinds of input types:

NO_INPUTS: the unit doesn't have inputs (yet).

SITES: the unit has one or more sites (and therefore no direct inputs).

DIRECT_LINKS: the unit has direct inputs (and no sites).

See also �le glob_typ.h.

13.2.2 Unit De�nition Functions

int krui_createDefaultUnit()

creates a unit with the properties of the (de�nable) default values of the kernel. The

default unit has the following properties:

� standard activation and output function

� standard activation and bias

� standard position-, subnet-, and layer number

� default IO type

1

The term T-type was changed to IO-type after completion of the kernel

168 CHAPTER 13. KERNEL FUNCTION INTERFACE

� no unit prototype

� no sites

� no inputs or outputs

� no unit name

Returns the number of the new unit or a (negative) error code. See also include �le

kr_def.h.

int krui_createUnit(char *unit_name, char *out_func_name,

char *act_func_name, FlintType act,

FlintType i_act, FlintType out,

FlintType bias)

creates a unit with selectable properties; otherwise like krui_createDefaultUnit().

There are the following defaults:

� standard position-, subnet-, and layer number

� default IO type

� no unit prototype

� no sites

� no inputs or outputs

Returns the number of the new unit or a (negative) error code. See also include �le

kr_def.h.

int krui_createFTypeUnit(char *FType_name)

creates a unit with the properties of the (previously de�ned) prototype. It has the following

default properties:

� standard position number, subnet number and layer number

� no inputs or outputs

The function returns the number of the new unit or a (negative) error code.

krui_err krui_setUnitFType(int UnitNo, char *FTypeName)

changes the structure of the unit to the intersection of the current type of the unit with

the prototype; returns an error code if this operation has been failed.

int krui_copyUnit(int UnitNo, int copy_mode)

copies a unit according to the copy mode. Four di�erent copy modes are available:

� copy unit with all input and output connections

� copy only input connections

� copy only output connections

� copy only the unit, no connections

Returns the number of the new unit or a (negative) error code. See glob_typ.h for

reference of the de�nition of constants for the copy modes.

krui_err krui_deleteUnitList(int no_of_units, int unit_list[])

deletes 'no of units' from the network. The numbers of the units that have to be deleted

13.3. SITE FUNCTIONS 169

are listed up in an array of integers beginning with index 0. This array is passed to

parameter 'unit list'. Removes all links to and from these units.

13.3 Site Functions

Before input functions (sites) can be set for units, they �rst have to be de�ned. To de�ne

it, each site is assigned a name by the user. Sites can be selected by using this name. For

the de�nition of sites, the following functions are available:

krui_createSiteTableEntry(char *site_name, char *site_func)

krui_changeSiteTableEntry(char *old_site_name, char *new_site_name,

char *new_site_func)

krui_deleteSiteTableEntry(char *site_name)

krui_getFirstSiteTableEntry(char * *site_name, char * *site_func)

krui_getNextSiteTableEntry(char * *site_name, char * *site_func)

krui_getSiteTableFuncName(char *site_name)

krui_setFirstSite(void)

krui_setNextSite(void)

krui_setSite(char *site_name)

krui_getSiteValue()

krui_getSiteName()

krui_setSiteName(char *site_name)

krui_getSiteFuncName()

krui_addSite(char *site_name)

krui_deleteSite()

13.3.1 Functions for the De�nition of Sites

krui_err krui_createSiteTableEntry(char *site_name, char *site_func)

de�nes the correspondence between site function and name of the site. Error codes are

generated for site names already used, invalid site functions, or problems with the memory

allocation.

krui_err krui_changeSiteTableEntry(char *old_site_name,

char *new_site_name,

char *new_site_func)

changes the correspondence between site function and name of the site. All sites in the

network with the name old_site_name change their name and function. Error codes are

generated for already de�ned site names, invalid new site function, or problems with the

memory allocation.

krui_err krui_deleteSiteTableEntry(char *site_name)

deletes a site in the site table. This is possible only if there exist no sites in the network

with that name. Returns an error code if there are still sites with this name in the net.

170 CHAPTER 13. KERNEL FUNCTION INTERFACE

bool krui_getFirstSiteTableEntry(char * *site_name, char * *site_func)

bool krui_getNextSiteTableEntry (char * *site_name, char * *site_func)

returns the �rst/next pair of site name and site function. The return code is TRUE if

there is (still) an entry in the site table, else FALSE.

char *krui_getSiteTableFuncName(char *site_name)

returns the name of the site function assigned to the site. If no site with this name exists,

a pointer to NULL is returned.

13.3.2 Functions for the Manipulation of Sites

bool krui_setFirstSite(void)

initializes the �rst site of the current unit, i.e. the �rst site of the current unit becomes

current site. If the current unit doesn't have sites, FALSE is returned, else TRUE.

bool krui_setNextSite(void)

initializes the next site of the current unit. If the unit doesn't have more sites, FALSE is

returned.

krui_err krui_setSite(char *site_name)

initializes the given site of the current unit. An error code is generated if the unit doesn't

have sites, the site name is invalid, or the unit doesn't have a site with that name.

FlintType krui_getSiteValue()

char *krui_getSiteFuncName()

returns the name/value of the site function of the current site.

char *krui_getSiteName()

returns the name of the current site.

krui_err krui_setSiteName(char *site_name)

changes the name (and thereby also the site function) of the current site. An error code

is returned if the site name is unknown. The f-type of the unit is erased.

krui_err krui_addSite(char *site_name)

adds a new site to the current unit. The new site is inserted in front, i.e. it becomes

the �rst site of the unit. Therefore it is possible to make the new site current by a call

to krui_setFirstSite(). krui_addSite(...) has no e�ect on the current site! Error

codes are generated if the unit has direct input connections, the site name is invalid, or

problems with the memory allocation occurred. The functionality type of the unit will be

cleared.

bool krui_deleteSite()

deletes the current site of the current unit and all input connections to that site. The func-

tionality type of the unit is also erased. krui_setFirstSite() or krui_setNextSite()

has to be called before at least once, to con�rm the current site/unit. After the deletion

13.4. LINK FUNCTIONS 171

the next available site becomes current. The return code is TRUE if further sites exist,

else FALSE. The following program is su�cient to delete all sites of a unit:

if (krui_setFirstSite())

while (krui_deleteSite()) { }

13.4 Link Functions

The following functions are available to de�ne or determine the topology of the network:

krui_getFirstPredUnit(FlintType *strength)

krui_getNextPredUnit(FlintType *strength)

krui_getCurrentPredUnit(FlintType *strength)

krui_getFirstSuccUnit(int UnitNo, FlintType *strength)

krui_getNextSuccUnit(FlintType *strength)

krui_isConnected(int source_unit_no)

krui_areConnected(int source_unit_no, int target_unit_no,

FlintType *weight)

krui_getLinkWeight()

krui_setLinkWeight(FlintType strength)

krui_createLink(int source_unit_no, FlintType strength)

krui_deleteLink()

krui_deleteAllInputLinks()

krui_deleteAllOutputLinks()

krui_jogWeights(FlintType min, FlintType max)

int krui_getFirstPredUnit(FlintType *strength)

determines the unit number of the predecessor unit of the current unit and site; returns

0 if no such unit exists, i.e. if the current unit has no inputs. If a predecessor unit exists,

the connection between the two units becomes current and its strength is returned.

int krui_getNextPredUnit(FlintType *strength)

gets another predecessor unit of the current unit/site (returns 0 if no more exist). Other-

wise like krui_getFirstPredUnit(...).

int krui_getCurrentPredUnit(FlintType *strength)

yields the current predecessor unit.

int krui_getFirstSuccUnit(int UnitNo, FlintType *strength)

yields unit number and connection strength of the �rst successor unit to the current unit.

The return code is 0 if no such unit exists, i.e. the current unit has no outputs. If a successor

unit exists, the connection between the two units becomes current. If the successor unit has

sites, the site connected with this link becomes current site. The function is slow, because

the units are connected only backwards (lookup time is proportional to the number of

connections in the net).

172 CHAPTER 13. KERNEL FUNCTION INTERFACE

int krui_getNextSuccUnit(FlintType *strength)

gets another successor unit of the current unit (returns 0 if no other successors exist).

Otherwise like krui_getFirstSuccUnit(...). The function is slow, because the units

are only connected backwards.

bool krui_isConnected(int source_unit_no)

checks, whether there is a connection between the current unit and the source unit. If this

is true, this link becomes current and TRUE is returned.

bool krui_areConnected(int source_unit_no, int target_unit_no,

FlintType *weight)

checks, whether there is a connection between the source unit and the target unit. In

contrast to krui_isConnected(...) this function traverses sites during the search. If

there is such a connection, this link becomes current and TRUE is returned.

FlintType krui_getLinkWeight()

void krui_setLinkWeight(FlintType strength)

determines/sets the connection weight of the current link.

krui_err krui_createLink(int source_unit_no, FlintType strength)

creates a new link between the current unit/site and the source unit. An error code is

generated if a link between these two units already exists, or if the source unit does not

exist.

void krui_deleteLink()

deletes the current link. To delete a connection between the current unit/site and the

source unit a sequence of krui isConnected(source unit no) and krui deleteLink()

is ideal.

void krui_deleteAllInputLinks()

void krui_deleteAllOutputLinks()

deletes all inputs/outputs at the current unit/site.

void krui_jogWeights(FlintType min, FlintType max)

adds values, randomly distributed in [min;max], to the connection weights of the network.

See also krui_setSeedNo(...).

13.5 Functions for the Manipulation of Prototypes

By describing the characteristic properties of units, like activation/output function and

sites, the user can de�ne unit prototypes (called f-types in SNNS). Thereby the user can

create a library of units. It is a big advantage that each change to the prototypes in the

library a�ects all units of this f-type in the whole network. This means, that all units

of a certain type are updated with a change in the library. With the following functions

prototypes can be de�ned and manipulated:

krui_setFirstFTypeEntry()

13.5. FUNCTIONS FOR THE MANIPULATION OF PROTOTYPES 173

krui_setNextFTypeEntry()

krui_setFTypeEntry(char *Ftype_symbol)

krui_getFTypeName()

krui_setFTypeName(char *unitFType_name)

krui_getFTypeActFuncName()

krui_setFTypeActFunc(char *act_func_name)

krui_getFTypeOutFuncName()

krui_setFTypeOutFunc(char *out_func_name)

krui_setFirstFTypeSite()

krui_setNextFTypeSite()

krui_getFTypeSiteName()

krui_setFTypeSiteName(char *FType_site_name)

krui_createFTypeEntry(char *FType_symbol,char *act_func,

char *out_func, int no_of_sites,

char * *array_of_site_names)

krui_deleteFTypeEntry(char * FType_symbol)

bool krui_setFirstFTypeEntry()

bool krui_setNextFTypeEntry()

initializes the �rst/next prototype and makes it current. The return code is FALSE if no

unit types are de�ned, otherwise TRUE.

bool krui_setFTypeEntry(char *Ftype_symbol)

selects a prototype by a name and returns TRUE if the name exists.

char *krui_getFTypeName()

determines the name of the current prototype.

krui_err krui_setFTypeName(char *unitFType_name)

changes the name of the current prototype. The name has to be unambiguous, i.e. all

names have to be di�erent. If the name is ambiguous, or if memory allocation failed, an

error code is returned.

char *krui_getFTypeActFuncName()

determines the name of the activation function of the current prototype.

krui_err krui_setFTypeActFunc(char * act_func_name)

changes the activation function of the current prototype; returns an error code if the given

function is not a valid activation function. All units of the net that are derived from this

prototype change their activation function.

char *krui_getFTypeOutFuncName()

determines the name of the output function of the current prototype.

krui_err krui_setFTypeOutFunc(char *out_func_name)

changes the output function of the current prototype; returns an error code if the given

function is not a valid output function. All units of the net that are derived from this

prototype change their output function.

174 CHAPTER 13. KERNEL FUNCTION INTERFACE

bool krui_setFirstFTypeSite()

selects the �rst site of the prototype (this site becomes current prototype site); returns

TRUE if the prototype has sites.

bool krui_setNextFTypeSite()

selects the next site of the prototype (this site becomes current prototype site); returns

TRUE if the prototype has more sites.

char *krui_getFTypeSiteName()

determines the name of the current prototype site.

krui_err krui_setFTypeSiteName(char *FType_site_name)

changes the name (and also the site function) of the current prototype site. All units of

the net that are derived from this prototype change their site names or site functions. An

error code is generated if the new site name is not yet de�ned.

krui_err krui_createFTypeEntry(char *FType_symbol,char *act_func,

char *out_func, int no_of_sites,

char * *array_of_site_names)

de�nes the prototype of a unit. If the prototype is supposed to have sites, i.e. no of sites

> 0, an array of pointers to strings is needed to de�ne the sites. These pointers must point

to strings containing the names of the sites. The number of pointers in the arrays must

match no_of_sites. An error code is generated if the site names are ambiguous, one or

several site names are unknown, the prototype name is ambiguous, or a memory allocation

error occurred.

void krui_deleteFTypeEntry(char *FType_symbol)

deletes the speci�ed prototype. If there are still units in the net which are derived from

this prototype, they loose their unit type.

13.6 Functions to Read the Function Table

int krui_getNoOfFunctions()

determines the number of available functions (unit, site, and learning functions).

void krui_getFuncInfo(int func_no,

char * *func_name,

int *func_type)

determines the name and type (activation, output, site, or learning function) from the

function table. See include �le glob_typ.h for the de�nition of the function types.

bool krui_isFunction(char *func_name, int func_type)

returns TRUE if the speci�ed function is a valid function.

bool krui_getFuncParamInfo(char *func_name, int func_type,

int *no_of_input_params,

int *no_of_output_params)

13.7. NETWORK INITIALIZATION FUNCTIONS 175

returns the number of input and output parameters of the given learning, update or

initialization function. Returns TRUE if the given function exists, FALSE otherwise.

13.7 Network Initialization Functions

krui_err krui_setInitialisationFunc(char *init_func)

changes the initialization function; returns an error code if the initialization function is

unknown.

char *krui_getInitialisationFunc(void)

returns the current initialization function. The default initialization function is `Random-

ize Weights' (see also kr_def.h).

krui_err krui_initializeNet(float *parameterArray, int NoOfParams)

initializes the network with the current initialization function.

13.8 Functions for Activation Propagation in the Network

krui_err krui_updateSingleUnit(int UnitNo)

evaluates the net input, the activation and the output value of the speci�ed unit; returns

an error code if the unit doesn't exist. krui_updateSingleUnit(...) also evaluates

'frozen' units.

char *krui_getUpdateFunc(void)

returns the current update function. The default update function is `Serial Order' (see

also kr_def.h).

krui_err krui_setUpdateFunc(char *update_func)

Changes the current update function; returns an error code if the update function is

invalid.

krui_err krui_testNet(int pattern_no,

float *updateParameterArray, int NoOfUpdateParams,

float *parameterInArray, int NoOfInParams,

float * *parameterOutArray, int *NoOfOutParams)

calculates the network error with the given pattern. Uses the current update function to

propagate the network. UpdateParameterArray contains the parameters of the update

function. NoOfUpdateParams contains the number of input parameters of the update

function. parameterInArray[0] contains the max. deviation. Set NoOfInParams to 1.

parameterOutArray[0] returns the error of the network. parameterOutArray[1] returns

the number of output units with a higher error value than the given max. deviation.

NoOfOutParams is set to 2.

Note: Patterns must be loaded before calling this function. The functions returns an error

code if an error occurred.

176 CHAPTER 13. KERNEL FUNCTION INTERFACE

krui_err krui_updateNet(float *parameterArray, int NoOfParams)

updates the network according to the update function. The network should be a feed-

forward type if one wants to update the network with the topological update function,

otherwise the function returns a warning message. To propagate a pattern through the

network the use of the following function calls is recommended:

krui_setPatternNo(pat_no);

krui_showPattern(OUTPUT_NOTHING);

krui_updateNet(parameterArray, NoOfParams);

See also krui_setSeedNo for initializing the pseudo random number generator. The func-

tion returns an error code if an error occurred. The following update functions are avail-

able:

� synchronous �ring: the units of the network all change their activation at the same

time.

� chronological order: the user de�nes the order in which the units change their acti-

vations.

� random order: the activations are computed in random order. It may happen that

some units are updated several times while others are not updated at all.

� random permutation: the activations of all units are computed exactly once, but in

a random order.

� topological order: the units change their activations according to their topological

order. This mode should be selected only with nets that are free of cycles (feed-

forward nets).

The topological order propagation method computes the stable activation pattern of the

net in just one cycle. It is therefore the method of choice in cycle free nets. In other

modes, depending upon the number of layers in the network, several cycles are required

to reach a stable activation pattern (if this is possible at all).

13.9 Learning Functions

krui_err krui_setLearnFunc(char *learning_function)

selects the learning function; returns an error code if the given learning function is un-

known.

char *krui_getLearnFunc(void)

returns the name of the current learning function. The default learning function is

`Std Backpropagation' (see also kr_def.h).

krui_err krui_learnAllPatterns(float *parameterInArray,

int NoOfInParams,

float * *parameterOutArray,

int *NoOfOutParams)

learns all patterns (each consisting of an input/output pair) using the current learning

13.10. FUNCTIONS FOR THE MANIPULATION OF PATTERNS 177

function. parameterInArray contains the learning parameter(s). NoOfInParams stores

the number of learning parameters. parameterOutArray returns the results of the learning

function. This array is a static array de�ned in the learning function. *NoOfOutParams

points to an integer value that contains the number of output parameters from the current

learning function. The function returns an error code if memory allocation has failed or

if the learning has failed. Patterns must be loaded before calling this function.

krui_err krui_learnSinglePattern(int pattern_no,

float *parameterInArray,

int NoOfInParams,

float * *parameterOutArray,

int *NoOfOutParams)

same as krui_learnAllPatterns(...) but teaches only the current pattern.

13.10 Functions for the Manipulation of Patterns

krui_err krui_setPatternNo(int patter_no)

sets the current pattern; returns an error code if the pattern number is invalid.

krui_err krui_deletePattern(void)

deletes the current pattern.

krui_err krui_modifyPattern(void)

modi�es the current pattern. Sets the pattern to the current activation of the units.

krui_err krui_showPattern(int mode)

outputs a pattern on the activation or output values of the input/output units. The

following modes are possible:

� OUTPUT_NOTHING: stores the input pattern in the activation of the input units.

� OUTPUT_ACT: like OUTPUT_NOTHING, but stores also the output pattern in the activa-

tion of the output units.

� OUTPUT_OUT: like OUTPUT_ACT, additionally a new output value of the output units

is computed.

krui_showPattern(...)

draws pattern on the display. Generates an error code if the number of input and output

units does not correspond with the previously loaded pattern. The constants of the various

modes are de�ned in glob_typ.h.

krui_err krui_newPattern(void)

creates a new pattern (an input/output pair). A pattern can be created by modifying the

activation value of the input/output units. The function returns an error code if there is

insu�cient memory or the number of input/output units is incompatible with the pattern.

Note: krui_newPattern() switches pattern shu�ing o�. For shu�ing the new patterns

call:

178 CHAPTER 13. KERNEL FUNCTION INTERFACE

krui_newPattern(...)

krui_shufflePattern(TRUE)

void krui_deleteAllPatterns()

deletes all previously de�ned patterns in main memory.

krui_err krui_shufflePatterns(bool on_or_off)

shu�es the order of the patterns if on or off is true. If on or off is false the original

order can be restored. See also krui_setSeedNo(...).

int krui_getNoOfPatterns(void)

returns the actual number of patterns (0 if no patterns have been loaded).

13.11 File I/O Functions

krui_err krui_loadNet(char *filename, char * *netname)

krui_err krui_saveNet(char *filename, char *netname)

loads/saves a network from/to disk and generates an internal network structure.

krui_err krui_loadPatterns(char * filename)

krui_err krui_savePatterns(char * filename)

loads/saves the patterns from/in memory.

An error code is returned if an error occurred during the execution of the I/O functions.

13.12 Functions to Search the Symbol Table

bool krui_getFirstSymbolTableEntry(char * *symbol_name,

int *symbol_type)

bool krui_getNextSymbolTableEntry(char * *symbol_name,

int *symbol_type)

determines the name and type of the �rst/next entry in the symbol table and returns

TRUE if another entry exists.

bool krui_symbolSearch(char *symbol, int symbol_type)

returns TRUE if the given symbol exists in the symbol table.

13.13 Miscelaneous other Interface Functions

char *krui_getVersion()

determines the version number of the SNNS kernel.

void krui_getNetInfo(int *no_of_sites, int *no_of_links,

int *no_of_STable_entries,

13.14. MEMORY MANAGEMENT FUNCTIONS 179

int *no_of_FTable_entries)

gathers various information about the network.

void krui_getUnitDefaults(FlintType *act, FlintType *bias,

int *io_type, int *subnet_no, int *layer_no,

char * *act_func, char * *out_func)

determines the default values for generating units. See also krui_createDefaultUnit()

and krui_createFTypeUnit(...).

krui_err krui_setUnitDefaults(FlintType act, FlintType bias,

int io_type, int subnet_no, int layer_no,

char *act_func, char *out_func)

changes the default values; returns an error code if the IO-type or the activation/output

function is unknown.

void krui_setSeedNo(long seed)

initializes the random number generator. If seed = 0, the random number generator is

re-initialized (this time really at random!).

int krui_getNoOfInputUnits()

int krui_getNoOfOutputUnits()

return the number of input/output units

void krui_resetNet()

sets the activation values of all units to their respective defaults.

13.14 Memory Management Functions

krui_err krui_allocateUnits(int number)

reserves <number> units in memory. Additional units can be requested by multiple calls

to that function. This function doesn't have to be called, since the SNNS kernel always

reserves enough memory for units, sites and links. If a large amount of units is needed, how-

ever, a call to krui_allocateUnits(...) eases the administration of system resources.

If krui_allocateUnits(...) is never called, units are always requested in blocks of size

<UNIT_BLOCK>. See also kr_def.h.

void krui_getMemoryManagerInfo(int *unit_bytes, int *site_bytes,

int *link_bytes, int *NTable_bytes,

int *STable_bytes, int *FTable_bytes)

determines the number of allocated (not the number of used) bytes for the various com-

ponents.

void krui_deleteNet()

deletes the network and frees the whole memory used for the representation of the data

structures.

180 CHAPTER 13. KERNEL FUNCTION INTERFACE

13.15 ART Interface Functions

The functions described in this paragraph are only useful if you use one of the ART models

ART1, ART2 or ARTMAP. They are additional functions, not replacing any of the kernel

interface functions described above. To use them, you have to include the �les art ui.h

and art typ.h in your application.

krui_err artui_getClassificationStatus(art_cl_status *status)

returns the actual classi�cation state of an ART network in parameter status. Type

art cl status is described above. An SNNS error code is returned as function value.

The function can be used for ART1, ART2 and ARTMAP models.

krui_err artui_getClassNo(int *class_no)

returns a number between 1 and M in parameter class no, which is either the index of

the actual winner unit in the F

2

layer of an ART1 or ART2 network or the one of the

activated MAP unit in an ARTMAP network. It will return -1 as class no if no actual

class is active. An SNNS error code is returned as function value.

int artui_getN (void)

returns the number of existing F

1

units (N) as function value. The function can be used

for ART1 and ART2 models, not for ARTMAP models.

int artui_getM (void)

returns the number of existing F

2

units (M) as function value. The function can be used

for ART1 and ART2 models, not for ARTMAP models.

int artui_getNa (void)

returns the number of existing F

a

1

units (N

a

) of the ART

a

subnet of an ARTMAP network

as function value. The function can only be used for ARTMAP models.

int artui_getMa (void)

returns the number of existing F

a

2

units (M

a

) of the ART

a

subnet of an ARTMAP network

as function value. The function can only be used for ARTMAP models.

int artui_getNb (void)

returns the number of existing F

b

1

units (N

b

) of the ART

b

subnet of an ARTMAP network

as function value. The function can only be used for ARTMAP models.

int artui_getMb (void)

returns the number of existing F

b

2

units (M

b

) of the ART

b

subnet of an ARTMAP network

as function value. This is the number of MAP �eld units, too. The function can only be

used for ARTMAP models.

13.16 Error Messages of the Simulator Kernel

Most interface functions return an error code if the parameters contradict each other, or

if an error occurred during execution. If no error occurred during execution of a kernel

interface function, the function returns the code: KRERR_NO_ERROR. KRERR_NO_ERROR is

equal to 0. The simulator kernel can generate 54 di�erent error messages. The error code

13.16. ERROR MESSAGES OF THE SIMULATOR KERNEL 181

constants are de�ned in glob_typ.h. There is also a function to translate an error code

into text:

char *krui_error(int error_code)

converts an error code to a string. The following error messages are used:

KRERR_NO_ERROR: No Error

KRERR_INSUFFICIENT_MEM: Insufficient memory

KRERR_UNIT_NO: Invalid unit number

KRERR_OUTFUNC: Invalid unit output function

KRERR_ACTFUNC: Invalid unit activation function

KRERR_SITEFUNC: Invalid site function

KRERR_CREATE_SITE: Creation of sites is not permitted because unit

has direct input links

KRERR_ALREADY_CONNECTED: Creation of a link is not permitted because

there exists already a link between these units

KRERR_CRITICAL_MALLOC: allocation failed in critical operation.

KRERR_FTYPE_NAME: Ftype name is not definite

KRERR_FTYPE_ENTRY: Current Ftype entry is not defined

KRERR_COPYMODE: Invalid copy mode

KRERR_NO_SITES: Current unit does not have sites

KRERR_FROZEN: Can not update unit because unit is frozen

KRERR_REDEF_SITE_NAME: Redefinition of site name is not permitted

(site name already exists)

KRERR_UNDEF_SITE_NAME: Site name is not defined

KRERR_NOT_3D: Invalid Function: Not a 3D-Kernel

KRERR_DUPLICATED_SITE: This unit has already a site with this name

KRERR_INUSE_SITE: Can not delete site table entry because site is

in use

KRERR_FTYPE_SITE: Current Ftype site is not defined

KRERR_FTYPE_SYMBOL: Given symbol is not defined in the symbol table

KRERR_IO: Physical I/O error

KRERR_SAVE_LINE_LEN: Creation of output file failed (line length

limit exceeded)

KRERR_NET_DEPTH: The depth of the network does not fit the

learning function

KRERR_NO_UNITS: No Units defined

KRERR_EOF: Unexpected EOF

KRERR_LINE_LENGTH: Line length exceeded

KRERR_FILE_FORMAT: Incompatible file format

KRERR_FILE_OPEN: Can not open file

KRERR_FILE_SYNTAX: Syntax error at line

KRERR_MALLOC1: Memory allocation error 1

KRERR_TTYPE: Topologic type invalid

KRERR_SYMBOL: Symbol pattern invalid

(must match [A-Za-z]^[|,]*)

KRERR_NO_SUCH_SITE: Current unit does not have a site with this name

182 CHAPTER 13. KERNEL FUNCTION INTERFACE

KRERR_NO_HIDDEN_UNITS: No hidden units defined

KRERR_CYCLES: cycle(s):

KRERR_DEAD_UNITS: dead unit(s):

KRERR_INPUT_PATTERNS: Pattern file contains not the same number of

input units as the network

KRERR_OUTPUT_PATTERNS: Pattern file contains not the same number of

output units as the network

KRERR_CHANGED_I_UNITS: Number of input units has changed

KRERR_CHANGED_O_UNITS: Number of output units has changed

KRERR_NO_INPUT_UNITS: No input units defined

KRERR_NO_OUTPUT_UNITS: No output units defined

KRERR_NO_PATTERNS: No patterns defined

KRERR_INCORE_PATTERNS: In-Core patterns incompatible with current network

(remove loaded patterns before loading network)

KRERR_PATTERN_NO: Invalid pattern number

KRERR_LEARNING_FUNC: Invalid learning function

KRERR_PARAMETERS: Invalid parameters

KRERR_UPDATE_FUNC: Invalid update function

KRERR_INIT_FUNC: Invalid initialization function

KRERR_DERIV_FUNC: Derivation function of the activation function

does not exist

KRERR_I_UNITS_CONNECT: input unit(s) with input connections to

other units:

KRERR_O_UNITS_CONNECT: output unit(s) with output connections to

other units:

KRERR_TOPOMODE: Invalid topological sorting mode

KRERR_PERC_SITES: Learning function does not support sites

KRERR_NO_OF_UNITS_IN_LAYER: Wrong no. of units in layer:

KRERR_UNIT_MISSING: Unit is missing or not correctly connected:

KRERR_UNDETERMINED_UNIT: Unit doesn't belong to a defined layer in the

network:

KRERR_ACT_FUNC: Unit has wrong activation function:

KRERR_OUT_FUNC: Unit has wrong output function:

KRERR_SITE_FUNC: Unexpected site function at unit:

KRERR_UNEXPECTED_SITES: Unit is not expected to have sites:

KRERR_UNEXPECTED_DIRECT_INPUTS: Unit is expected to have sites:

KRERR_SITE_MISSING: Site missing at unit:

KRERR_UNEXPECTED_LINK: Unexpected link:

KRERR_LINK_MISSING: Missing link(s) to unit:

KRERR_LINK_TO_WRONG_SITE: Link ends at wrong site of destination unit:

KRERR_TOPOLOGY: This network is not fitting the required topology

KRERR_PARAM_BETA: Wrong beta parameter in unit bias value:

Chapter 14

Transfer Functions

14.1 Prede�ned Transfer Functions

The following site, activation, and output functions are already prede�ned. Future releases

of the kernel will have additional transfer functions.

Site Functions:

Function Formula

Linear net

j

(t) =

P

i

w

ij

o

i

Produkt net

j

(t) =

Q

i

w

ij

o

i

PI net

j

(t) =

Q

i

o

i

Max net

j

(t) = max

i

w

ij

o

i

Min net

j

(t) = min

i

w

ij

o

i

At least 2 net

j

(t) =

(

0 if

P

i

w

ij

o

i

< 2

1 else.

Several other site functions have been implemented for the ART models in SNNS:

At least 2, At least 1, At most 0, Reciprocal. These functions normally are

not useful for other networks. So they are mentioned here, but not described in

detail.

183

184 CHAPTER 14. TRANSFER FUNCTIONS

Activation functions:

Function Formula

BAM a

j

(t) =

8

>

<

>

:

1 if net

j

(t) > 0

a

j

(t� 1) if net

j

(t) = 0

�1 if net

j

(t) < 0

BSB a

j

(t) = net

j

(t) � �

Elliott a

j

(t) =

net

j

(t)

1+jnet

j

(t)j

Identity a

j

(t) = net

j

(t)

IdentityPlusBias a

j

(t) = net

j

(t) + �

Logistic a

j

(t) =

1

1+e

�net

j

(t)+�

Logistic notInhibit like Logistic, but skip input from units

named "Inhibit"

Logistic Tbl like Logistic, but with table lookup

instead of computation

MinOutPlusWeight a

j

(t) = min

i

(w

ij

+ o

i

)

Perceptron a

j

(t) =

(

1 if net

j

(t) � �

0 if net

j

(t) < �

Product a

j

(t) =

Q

i

w

ij

o

i

RBF Gaussian see chapter 8.10.2.1

RBF MultiQuadratic see chapter 8.10.2.1

RBF ThinPlateSpline see chapter 8.10.2.1

Signum a

j

(t) =

(

1 if net

j

(t) > 0

�1 if net

j

(t) � 0

Signum0 a

j

(t) =

8

>

<

>

:

1 if net

j

(t) > 0

0 if net

j

(t) = 0

�1 if net

j

(t) � 0

StepFunc a

j

(t) =

(

1 if net

j

(t) > 0

0 if net

j

(t) � 0

TanH a

j

(t) = tanh(net

j

(t))

TanH Xdiv2 a

j

(t) = tanh(net

j

(t)=2)

Several other activation functions have been implemented for the ART models in

SNNS: Less than 0, At most 0, At least 2, At least 1, Exactly 1,

ART1 NC, ART2 Identity, ART2 NormP, ART2 NormV, ART2 NormW, ART2 NormIP,

ART2 Rec, ART2 Rst, ARTMAP NCa, ARTMAP NCb, ARTMAP DRho.

These functions normally are not useful for other networks. So they are mentioned

here, but not described in detail. For cascade correlation and time delay networks the

following modi�ed versions of regular activation functions have been implemented:

RCC logistic, RCC LogisticSym, RCC Tanh, RCC Linear, TD Logistic,

TD Elliott. They behave like the ordinary functions with the same name body.

14.2. USER DEFINED TRANSFER FUNCTIONS 185

Output Functions:

Function Formula

Identity o

j

(t) = a

j

(t)

Clip 0 1 o

j

(t) =

8

>

<

>

:

0 if a

j

(t) � 0

a

j

(t) if a

j

(t) < 1

1 falls a

j

(t) � 1

Clip 1 1 o

j

(t) =

8

>

<

>

:

�1 if a

j

(t) � �1

a

j

(t) if �1 < a

j

(t) < 1

1 if a

j

(t) � 1

Threshold 0.5 o

j

(t) =

(

0 if a

j

(t) � 0:5

1 if a

j

(t) > 0:5

Two other output functions have been implemented for ART2 in SNNS: ART2 Noise PLin

and ART2 Noise ContDiff These functions are only useful for the ART2 implementation

So they are mentioned here, but not described in detail.

14.2 User De�ned Transfer Functions

The group of transfer functions can be exented arbitrarily by the user. In order to make

them available inside SNNS the following steps have to be performed:

1. In �le \.../SNNSv3.0/kernel/func tbl" the new function has to be de�ned as:

extern FlintType My fancy function();

2. In the same �le the name of the function has to be inserted in the function table.

An example entry for an activation function would be

"Act MyFunction",ACT FUNC, 0, 0, (FunctionPtr) MyFancyFunction,

Notice that the second entry de�nes the type (activation, initialization, etc.) of the

new function!

If the new function is an activation function, the corresponding derivation function

has also to be inserted in the function table. E.g.:

"Act MyFunction",ACT DERIV FUNC, 0, 0, (FunctionPtr) ACT DERIV MFF,

This entry has to be given, even if no such derivation function exists in the mathe-

matical sense. In that case ``ACT DERIV Dummy'' has to be speci�ed as name of the

derivation function.

If the function exists, it has to be declared and implemented just as the activation

function.

Please note, that activation and derivation function have to have the same name

su�x (here: \MyFunction")!

3. The functions must be implemented as C programs in following �les:

186 CHAPTER 14. TRANSFER FUNCTIONS

activation functions in \.../SNNSv3.0/kernel/trans f.c"

output functions in \.../SNNSv3.0/kernel/trans f.c"

site functions in \.../SNNSv3.0/kernel/trans f.c"

initialization functions in \.../SNNSv3.0/kernel/init f.c"

learning functions in \.../SNNSv3.0/kernel/learn f.c"

update functions in \.../SNNSv3.0/kernel/update f.c"

The name of the implemented function has to match the name speci�ed in the

function table!

4. Recompile the kernel with make. Make sure, that \ar libfuncs.a" and \ranlib

libfuncs.a" is executed.

5. Recompile and link the user interface using make.

The new function should be available now in the user interface together with all prede�ned

functions.

Chapter 15

Simulator Kernel Implementation

The simulator kernel alone, including comments, has a volume of about 60000 lines of

source code with about 1.650 Mbyte. It is implemented in ANSI C. The simulator kernel

consists of the following �les:

Header �les:

All source code �les have corresponding public (.h) and private (.ph) header �les associated

with them. The public header �les are used to make the exported functions of the modul

accessible to the other moduls, while the private ones de�ne function prototypes and

variables exclusively global to the functions of the modul. Additionally there are the

following header �les without corresponding c-moduls.

Source �le Meaning

art typ.h global types for all ART moduls

cc mac.h macros for cc and rcc moduls

cc typ.h global types for all cc moduls

func mac.h macros for transfer functions

glob typ.h user interface data types

kr const.h constants of the kernel

kr def.h defaults for the kernel

kr mac.h macros of the kernel

kr typ.h data types of the kernel

krart df.h macros for the ART kernel functions

krui typ.h user interface functions

random.h randomize functions for System V

version.h version and patchlevel of the kernel and the kernel interfaces

187

188 CHAPTER 15. SIMULATOR KERNEL IMPLEMENTATION

Sourcecode �les:

Source �le Meaning

art ui.c ART user interface functions

arttr f.c special transfer functions for ART models

cc learn.c learning functions for cascade correlation

cc rcc.c Common functions of CC and RCC

cc rcc topo.c CC and RCC topology check

func tbl.c contains the function table

init f.c user de�nable initialisation functions

kernel.c kernel low-level functions

kr amap.c kernel low-level functions for ARTMAP model

kr art.c kernel low-level functions for ART models

kr art1.c kernel low-level functions for ART1 model

kr art2.c kernel low-level functions for ART2 models

kr funcs.c routines to handle the function table

kr inversion.c network inversion functions

kr io.c compiler-kernel interface (�le I/O)

kr mem.c functions of the memory management

kr rand.c random functions for MS-DOS implementation

kr td.c time delay learning functions

kr ui.c high level user interface functions

learn f.c user de�nable teaching functions

make tbl.c create a lookup table for transfer functions

matrix.c matrix handling functions

rcc learn.c learning functions for recurrent cascade correlation

strdup.c contains the strdup(...) function (not in ULTRIX-32)

tbl func.c sigmoid activation function with table lookup

trans f.c user de�nable transfer functions

(unit, site, and output functions)

update f.c user de�nable update functions

Test, demo, and benchmark programs:

Source �le Meaning

bignet.c demo program to generate large 3-layer

feedforward networks

m art.c network generator for ART network architectures

netlearn.c demo program for the network training

netperf.c SNNS kernel benchmark test program

snnsbat.c SNNS kernel network training program for very large networks

and/or training sets. Runs in the background and controls

training of the network (See also dokument �le: snnsbat.doc).

189

Example Networks:

Source �le Meaning

art1.net ART-1 network

art2.net ART-2 network

artmap.net ARTMAP network

encoder.net 8-3-8 encoder network

font.net 16x16 character recognition network

letters.net character recognition network

letters3D.net character recognition network in 3D

necker.net character comparison network

nettalk.net nettalk network

xor.net XOR Network

xor-rec recurrent XOR Network

Probably there will be more example networks in the new SNNS release. See the �les in

the examples directory.

Chapter 16

Implementation of the User

Interface

This chapter explaines important data types, functions, and the program structure of the

graphical user interface. De�nitions and data structures used by the program, are located

not only in the �le glob typ.h of the SNNS kernel, but also in the header �les of the

X-window system and the Athena Toolkit. For reference of those de�nitions see the X11

documentation release 4.0 or 5.0.

How X, XGUI and the kernel cooperate is sketched in �gure 16.1. The MIT Athena Toolkit

was selected because of its widespread use. In this toolkit, so called widgets are de�ned

(window elements like boxes, menu buttons, toggles, scrollbars and so forth). XGUI should

work with all window mangers, but the following descriptions refer only to the twm window

manager.

6

?

6

?

6

?

?

6

?

6

Athena Toolkit

Xt-Intrinsics

Xlib

Kernel Interface

SNNS-kernel

SNNS-XGUI

Figure 16.1: How X, XGUI and the simulator kernel cooperate

After opening of the �rst window, SNNS-XGUI transfers control to X by entering the

190

191

main-event-dispatch-loop

1

.To react to di�erent events (e.g. mouse movement), X now calls

prede�ned subroutines like callbacks and event handlers, which return control to X after

completion. All outputs (e.g. line drawing) are bu�ered by the X server until it has

resumed control. This asynchronous behaviour complicates debugging, since changes in

the user interface are invisible at the time they are processed. The compile switch DEBUG

forces the X server with calls to XFLUSH() to produce output at crucial points. The same

result is obtained by specifying -synchronous as an argument in the call to XGUI. In

both cases output speed decreases dramatically.

For windows which return a value, like the Layer window or the Con�rmer, X must react

directly to events. There, the Event-Dispatch-Loop is re-programmed where the exit

condition is true after the call to a routine for a speci�c button (e.g. DONE). The next

program segment can immediately use the result. The call to the con�rmer demonstrates

this very clearly:

if (ui_confirmYes(''Load will erase current network. Load?''))

ui_file_loadNet(filename);

else

ui_printMessage(''Loading aborted.'');

...

ui confirmYes() builds the con�rmer and dispatches all events until one of the buttons

YES or NO is pressed. Then it returns this value as a boolean. Without this loop, the

con�rmer would become visible only after the processing of the code, and a default value

would always be returned!

On processing the teaching cycles or the update steps, it is necessary to check for new

events after each step. This is the only way to recognize the clicking of the STOP button

in time. The WorkProc construct is a means for solving this problem. The routine for

performing one step is declared as WorkProc with the statement XtAppAddWorkProc(: : :).

This routine is called as long as no events are waiting. When all cycles/steps are processed

it returns True, thereby being removed. A soon as the button STOP is pressed, the cor-

responding callback routine ui rem stopProc removes the WorkProc with the command

XtRemoveWorkProc(ui workProcId). A WorkProc, already existing when a new one is

de�ned, gets deleted (see also [You89], p. 136�). This also explains, why the starting

of update steps cancels a running teaching process and vice versa. A running WorkProc

always terminates correctly, i.e. it is not interrupted by incomming events. Therefore

XGUI processes all events as usual, but slows down with increasing running time of the

WorkProcs.

In general there is one callback function for each button. However, some buttons call

the same function, and use just di�erent values for the argument client data. This

argument, the calling widget and an aditional argument call data are passed over to the

callback procedure. client data is de�ned by AtAddCallback(), call data by the kind

of widget that is calling. The scrollbar widget, for example, passes the position of the

slider.

1

SNNS-XGUI interpretes this as an application.

192 CHAPTER 16. IMPLEMENTATION OF THE USER INTERFACE

With the use of window systems like X, a structuring of the source code according to the

windows used is almost automatic (see also table 16.1 and 16.2).

Callback procedures are kept in a separate �le. Since SNNS-XGUI consists mainly of those

functions and calling depth remains fairly shallow, the source code is easily readable.

16.1 Administration of the Windows

There are three kinds of windows. They di�er in the shell selected, and in the mode of

the event handling. Transient shell windows (transientShellWidgetClass) have only a

thin frame and block all other windows. This means that no more events are processed

until this window is closed and the shell widget is destroyed. This is done by generating

the window with the call Xt popup(widget, XtGrabExklusive) with the toplevel widget

ui toplevel as the parent. Some windows, like the �le panel, do not block XGUI, because

they are called with Xt popup(widget, XtGrabNone). The third kind of windows are

created as a top level shell (topLevelShellWidgetClass) like the manager panel.

Most of the windows (AsciiTextWidget, ToggleWidget, ScrollbarWidget) have panel items

that can be changed by the user. These values are commonly stored in global variables, to

enable other parts of the program to access them, even after the widget is destoyed. Some

resources are prede�ned as so called fallback resources in the �le ui main.h. The bitmaps

for the buttons are located in the directory iconsXgui and are linked to the program at

compile time.

A callback routine is called every time a window is destroyed (for example by clicking DONE

in popups). This routine takes care of all necessary actions, before vital information is

lost, like copying the values of AsciiTextWidgets into global variables. In addition, there

are ags which indicate whether or not a popup is existing.

Many panels contain form widgets, where other widgets can be positioned freely. In XGUI

the location of these new widgets is always relative to the position of already existing

widgets. The info panel, for example, takes the �rst line as horizontal reference. The

change of widget positions has to be made very carefully, since some widgets have the

same variable

2

and may not be addressable anymore.

To ease the handling of the widgets some routines are given in the �le ui xWidgets.c.

They allow the creation of Label-, AsciiText-, Button-, MenuButton-, Toggle- and

Scrollbar-Widgets in a form widget. Three functions return the value of an ascii text

widget as a string (ui xStringFromAsciiWidget), oat (ui xFloatFromAsciiWidget)

or integer (ui xIntFromAsciiWidget). To set the contents of a widget to a speci�c

value use ui xSetString, or ui xSetLabel. To set/read the state of a toggle use

ui xSetToggleState and ui xGetToggleState.

2

Otherways every widget would need its own local variables

16.1. ADMINISTRATION OF THE WINDOWS 193

bn TD bignet.c the BIGNET time delay panel & functions

bn art1.c the BIGNET ART1 panel & functions

bn art2.c the BIGNET ART2 panel & functions

bn artmap.c the BIGNET ARTMAP panel & functions

bn basics.c subroutines common to all BIGNET tools

bn bignet.c the BIGNET feed forward panel & functions

bn menu.c the BIGNET tools selection menu

cc main.c cascade correlation control panel

d3 anageo.c 3{D matrix operations

d3 disp.c event loop for 3{D display

d3 dither.c color rastering

d3 draw.c high level drawing functions

d3 font5x7.c 5x7 font array

d3 font5x8.c 5x8 font array

d3 font8x14.c 8x14 font array

d3 fonts.c text output control

d3 global.c global variables for 3{D

d3 graph.c low level drawing functions

d3 light.c illumination panel

d3 links.c 3{D link display panel

d3 lists.c 3{D list managenemt

d3 main.c 3{D interface handling

d3 model.c solid/wire display setting

d3 move.c rotation,translation and scaling

d3 pannels.c 3{D control panel

d3 point.c 3{D pixel output

d3 project.c 3{D projection panel

d3 setup.c 3{D setup panel

d3 shade.c shading algorithm

d3 units.c 3{D unit setup panel

d3 xUtils.c X window routine interface

d3 zValue.c z{value input panel

d3 zgraph.c z{bu�er functions

o graph.c plotting of the error graph

ui action.c editor actions

ui colEdit.c changing of the display colors

ui color.c handles the color maps

Table 16.1: The source �les of SNNS-XGUI, Part I

194 CHAPTER 16. IMPLEMENTATION OF THE USER INTERFACE

ui con�g.c load & save of con�gurations

ui con�rmer.c handling of the con�rmer

ui display.c administration of displays

ui displwght.c implements the Hinton{ and WV{diagrams

ui edit.c editing of f-types and sites

ui event.c event handler for mouse or window events

ui �le.c creation of the �le panel

ui �leP.c load, save (high level)

ui funcdispl.c displays the activation and output functions

ui info.c creation of the info panel

ui infoP.c callbacks and handling of the info panel

ui inversion.c handels the inversion display & algorithm

ui key.c event handler for keyboard

ui layer.c creation of layer popups

ui layerP.c handling of the layer popup

ui lists.c administration of the list popup

ui main.c initializing

ui mainP.c windows and popups, help facility

ui maspar.c maspar user interface

ui netGraph.c drawing of network elements (mid level)

ui netUpdate.c drawing of the network, whole or parts (high level)

ui print.c creation of the print panel

ui printP.c callbacks and handling of the print panel

ui printps.c handling of the Postscript generation

ui remote.c creation of the remote panel

ui remoteP.c callbacks and handling of the remote panel

ui result.c handling of the result �le generation

ui selection.c administration of the selection

ui setup.c creation of the setup panel

ui setupP.c administration of the setup panel

ui status.c status information in the manager panel

ui textP.c text output (stdout, Log �le)

ui utilP.c utility functions

ui xGraphic.c X graphic interface (low level)

ui xWidgets.c handling of widgets

ui.h datatypes, de�nitions

Table 16.2: The source �les of SNNS-XGUI, Part II

16.2. MAIN PROGRAM 195

16.2 Main Program

The function main() in the �le ui main .c performs the initialisation and creates the

manager panel. It then passes the control to X with XtMainLoop(). Here is the pseudo

code:

Initialize the application;

Initialize the selection list;

Initialize the display list;

Initialize the editor;

Initialize all global variables;

Load default configuration from the file default.cfg;

Create manager panel;

Pass control to X;

Loading data from the con�guration �le changes some global variables, therefore they must

be initialized already. The X event dispatcher calls the SNNS-XGUI callback routines and

event handler routines. Actions that a�ect the network require communication with the

kernel (see also chapter 16.12). The following sections describe the reactions of the windows

and widgets to di�erent events.

16.3 Manager Panel

The manager panel consists of the info panel, a message line and the XGUI menu. The

panel is created at initialization time. The callback functions in the �le ui mainProcs.c

create all the windows and the procedure ui printMessage() creates messages in the

panel. SNNS-XGUI is left by pressing the QUIT button with the function ui quit().

If multiple displays are used, all status information is best kept in one window. To display

the information in di�erent windows would waste space on the displays. Therefore this

information is collected in the manager panel.

Functions, which change a value displayed in the manager panel have to use the routine

ui stat displayStatus to updated the panel. The function ui stat displayStatus

displays the other status information with the help of the variables ui sel numberOf-

SelectedItems, ui key flags, currentLayer and ui currentDisplayPtr. The scan-

ning position is pased on as a parameter. To avoid ickering, this function is called only

when there is a change in information (i.e. it is not called if the mouse is dragged over the

display without changing the scanning position).

Sometimes the displayed attributes have to be checked for validity. The function ui info -

anyUnitSelected() checks whether the displayed source and target really exist. The

function ui info makeUnitInfoPanelConsistent() updates the panel, if units or sites

have been erased. It is also called by several functions of the action module.

The Info panel is the most complex of SNNS-XGUI. To ease access to the widgets of

the source and target units, they are accumulated in structures (ui targetWidgets,

ui sourceWidgets, ui linkWidgets). This was used in programming the routines in

196 CHAPTER 16. IMPLEMENTATION OF THE USER INTERFACE

ui infoProcs.c. Each attribute is also stored in a corresponding attribute structure

(ui targetUnit, ui sourceUnit, ui link).

16.4 Layer Panel

The toggle button in the layer panel is initialized with the bits of the variable ui layer-

StartValue. Bit 0 corresponds to layer 1, bit 1 to layer 2, etc. Because the layer panel

yields a value, X has to display the panel and allow user input before the program is

continued (just like it was the case with the con�rmer). The result is available in the

variable ui layerReturnValue.

16.5 Graphic Windows

All data for the graphic windows is stored in a linear linked list. Valid for all these

windows are the following event types: GraphicExpose, ButtonPress, ButtonRelease,

KeyPress, MotionNotify, EnterNotify, LeaveNotify, MapNotify, UnmapNotify, and

StructureNotify.

There is no background storage for the graphic output, because it would be too memory

intensive. The drawback is a longer screen setup time which depends mainly on the number

and kind of link options that are displayed.

For simplicity reasons, all displays use the same graphic context ui gc (see [You89], p.

184 for reference).

The events for all graphic windows are processed with the three event handlers ui K-

Event() for KeyPress events, ui can MWEvent() for mouse and window events and ui -

can MapEvent() for window mapping events. These functions are installed for each win-

dow with XtAddEventHandler. They determine in which window the event has occurred.

This information is needed to determine subnet number and grid position because of the

di�erent origins in the various displays.

Input to the windows are all keyboard events, mouse events, and window events. A

window is always active, if it has last sent an EnterNotify event (the mouse has been

moved into the window) and is not closed. Thereby, the editor becomes independent from

the windows.

The processing of graphical output is more complicated, since some operations a�ect only

one (e.g. a refresh; UI LOCAL), others all open windows (e.g. a change in the network;

UI GLOBAL). A simple approach would just draw a new network in every display. This,

however, would take much more time than the solution found in SNNS-XGUI, where the

editor determines whether it is better to re-draw the whole network or only the updates.

This approach leaves some pixels white on each update, which slowly spoils the picture.

X refreshes the displays with a call to ui refresh after each GraphicExpose event, if the

count component of the event is 0 (see also [You89], p. 118). This routine is also de�ned

as a callback function for expose events on the generation of a display.

16.5. GRAPHIC WINDOWS 197

16.5.1 Event Handler for Mouse and Window Events

This function, located in the �le ui can MWEvent.c, does the following:

SWITCH (event type)

ButtonPress:

get event data;

SWITCH (mouse button):

left button:

remember current first position for selection of area;

draw selection rectangle;

middle button:

remember current position as source unit, if there is

a unit;

ButtonRelease:

get event data;

SWITCH (mouse button):

left button:

delete selection rectangle;

remember second position for area and normalize both

coordinates;

select or unselect area;

middle button:

IF info panel created THEN

show this unit as target and remembered

unit as source;

right button:

IF empty position THEN

unselect all (in this subnet)

ELSE

unselect this single unit

EnterNotify (mouse is moved into a graphic window):

set this window as actual and show new status;

MouseMoves (mouse is moved):

show new status, if new grid position reached;

MouseDragg (mouse is moved with at least one button down):

if the left button is pressed, delete old selection box,

draw a new one.

save position of the event in the global variables

ui_pixPosOld and ui_gridPosOld;

The actions to these events are de�ned in this function. The results a�ect the info panel

and the status panel.

198 CHAPTER 16. IMPLEMENTATION OF THE USER INTERFACE

16.5.2 Event Handler for Keyboard Events

This function, in the �le ui KEvent.c, is implemented as a big SWITCH statement. It

represents an automaton for the recognition of editor commands. The transition from

one state to the following state (stored in the global variable ui key currentState) is

performed at the next call to the function. Depending upon the selected mode (normal,

Mode Units, Mode Links), the following state is stored in one of the global variables

ui key returnUnitState or ui key returnLinkState. This means that the automata

changes its behaviour according to these two variables.

On Units Move/Copy the user is expected to click on a target position. In the meantime

the automata is on hold (UI STATE GETDEST), and signals this to the event handler for

mouse and window events in the global varaible ui outlineActiv. When the target is

de�ned, this event handler de�nes the next state of the automata.

Some actions ask the user for a value in a popup window. Since this blocks SNNS-XGUI

as a whole (with XtPopup(widget, XtGrabExclusive)), no additional steps have to be

taken.

16.5.3 Editor Actions

The �le ui action.c contains all editor operations that are called exclusively by the

event handlers for keyboard and pointer events. The basic structures of the functions that

process selected units look very much alike. The concept is the following:

IF operation can not be performed THEN

error message;

return;

delete marks of all selected units;

WHILE there is a selected unit DO

IF desired operation for this unit can be performed THEN

execute operation;

change graphic if necessary;

ELSE

report (if desired)

END WHILE

keep graphic and values in info panel consistent;

Redraw marks for selected units;

To perform the actions Units Copy and Units Move, it �rst has to be checked, whether

all target positions in the grid are available for the operation. Therefore, the func-

tion ui action checkNewPositions() checks, whether the target position is empty for

UI ACTION COPY, or occupied by unselected units for UI ACTION MOVE. The whole operation

is skipped if an error condition results from the check.

After links or units have been deleted, it is possible that information in the info panel has

become invalid. A call to ui info makeInfoPanelConsistent() assures consistency in

16.5. GRAPHIC WINDOWS 199

that panel.

Often it is necessary to reiterate the list of selected units within the while-loop (e.g.

the function ui action linksMakeClique() generates connections between all selected

units). In that case, a second while-loop is used that traverses the selection list, either

from the start, or from the current element.

16.5.4 Setup Panel

All setup data is contained in a structure (struct SetupDataType) which is itself con-

tained in a display structure.

typedef struct SetupDataType {

Bool showValueFlg;

Bool showValue;

Bool showTitleFlg;

Bool showTitle;

Bool showLinkFlg;

Bool showDirectionFlg;

Bool showWeightFlg;

FlintType linkPosTrigger, linkNegTrigger;

FlintType unitScaleFactor;

};

When the setup panel is opened, the corresponding display is current. Therefore all

changes are performed in the current display ui currentDisplayPtr, and all inital data

is read there. If a scrollbar is manipulated, the callback function ui thumbed() is called

to save the value in the corresponding global variable. To set the values of showValue

and showTitle, there are two callback functions that assign the value to the parameter

client data in each menu option. The layer value is determined by the common method

of the layer popup.

The toggles, that switch the various display options on and o� call the function ui set -

toggleValues(). This function sets the corresponding component of the setup variables

in the current graphic window.

� showValueFlg: If this ag is set, the value that determines the size of the unit is

numerically displayed below it.

� showValue: This number gives the displayed value and can be one of the following:

UI ACTIVATION, UI OUTPUT, UI INITIAL ACTIVATION oder UI BIAS.

� showTitleFlg: States whether or not the unit title should be given.

� showTitle: States whether the unit number (UI NUMBER), or the unit name (UI -

NAME) will be the title.

� showLinkFlg: Links are displayed only if this ag is set.

� showDirectionFlg: If this ag is set, the connections will be displayed as arrows.

200 CHAPTER 16. IMPLEMENTATION OF THE USER INTERFACE

� showWeightFlg: States, whether the link weights are displayed.

� linkPosTrigger and linkNegTrigger: For positive and negative weights, these

ags hold the threshold for drawing links.

� unitScaleFactor: If the activation of a unit is above this limit it is displayed with

maximum extension.

When the DONE button is pressed, the setup panel becomes invisible again. The new grid

size and origin are read from the panel, and the graphic window is redrawn. There the

new parameters are used, and the desired picture is created.

16.5.5 Freezing Displays

The FREEZE button ips a switch in the display structure which prevents the high level

display routines from a�ecting this window. The call ui netCompleteRefresh(UI LOCAL),

necessary after a GraphicExpose event, is the only one that changes a frozen display.

16.6 List Module

The construction of a panel with a list widget is a separate module. These panels are used

to select functions, IO-types and F-types. There are only three functions which must react

to the various lists in a speci�c way: ui list getFirstItem() yields the �rst element

of the list, ui list getNextItem() the rest, and ui list setValue handles the result.

Depending upon the type of the list, the result is either written to the appropriate place in

the panel (source unit or target unit), or put into the global variable ui list returnName.

In any case, the variable ui list returnIndex contains the list index used last. The list

is constructed with ui list buildList(parentWidget, type), where type can have one

of the following values:

Type Meaning

UI LIST IOTYPE all IO-types

UI LIST FTYPE all de�ned f-types

UI LIST FTYPE NAME ditto (edit f-type)

UI LIST ACT FUNC all activation functions

UI LIST FTYPE ACT FUNC ditto (edit F-Typ)

UI LIST OUT FUNC all output functions

UI LIST FTYPE OUT FUNC ditto (edit F-Typ)

UI LIST SITE FUNC all site functions

UI LIST SITE all de�ned sites

UI LIST FTYPE SITE all sites on the current F-Typ

UI LIST UNIT SITE all sites at the current unit

UI LIST LEARN FUNC all teaching functions

16.7. FILE PANEL 201

16.7 File Panel

After clicking DONE, the directory and the four �le names are copied from the Ascii-

TextWidgets (ui path, ui fileNET, ui filePAT, ui fileCFG, ui fileTXT) into the cor-

responding global variables (ui pathname, ui filenameNET, ui filenamePAT, ui file-

nameCFG, ui filenameTXT).

The �le ui fileProcs.c contains the functions for loading and saving of nets, patterns,

con�gurations and texts. The structure of these functions is:

PROCEDURE save;

IF a file with this name already exists THEN

IF User allows overwrite THEN

save;

ELSE

abort and message;

END;

PROCEDURE load;

IF a file with this name already exists THEN

load;

IF error THEN message;

END;

16.8 Help Window

The callback function ui help searchText is called by clicking one of the buttons MORE,

LOOK or TOPICS with a ag as client data. On clicking LOOK or MORE the string is read

from the X primary section, and the help text is searched for this string from the beginning.

On clicking TOPICS the string * TOPICS is searched.

16.9 Con�rmer

The �le ui confirmer.c consists mainly of the functions listed in [SUN86], p. 348 �

(pre�x ui cf) for the construction of a con�rmer package adapted to X windows. This

package was enhanced only for the functions ui confirmOk() and ui confirmYes() to

highlight the calls to the con�rmer in the source code. Additionally an icon (STOP or

exclamation mark) is displayed in the con�rmer.

The intrinsics of X don't allow an interuption of XtAppMainLoop(). Therefore, a tempo-

rary event dispatch loop has to be programmed (see below). This loop is exited when a

button in the con�rmer is pressed, whose callback routine changes the variable ui cf exit

to TRUE. Since XtGrabExklusive is set and the XGUI toplevel widget ui toplevel is the

parent of the con�rmer, it blocks all events for SNNS-XGUI until it is destroyed.

202 CHAPTER 16. IMPLEMENTATION OF THE USER INTERFACE

ui_cf_exit = FALSE;

while (NOT ui_cf_exit) {

XtAppNextEvent(ui_appContext, &event);

(void) XtDispatchEvent(&event);

}

16.10 Graphic

The graphic module consists of three levels: The �rst level is responsible for drawing the

network as a whole. The middle level draws or delets single network elements. This level

uses graphic primitives of the lowest level, which make up the X graphic interface, as well

as basic Xlib output functions for graphics and text.

The �le ui netUpdate.c contains the functions for drawing the whole net (pre�x ui net).

All routines in this module determine in which of the open displays to draw. Iconi�ed or

frozen displays are ignored. Depending upon parameters, the function ui net update-

WholeNet() draws either all links or all units. For a complete update of the net use the

function ui net completeRefresh(). This function �rst clears the window, then draws

the links and �nally the units.

The �le ui netGraph.c contains the functions for drawing network elements (ui draw-

Unit(), ui drawLink()). Two switches are important, one to determine whether to draw

or delete the element (UI ERASE or UI DRAW), and one to determine whether to do the

output globally (UI GLOBAL) or only in the current window (UI LOCAL). Units are drawn if

the subnet number is the same as in the window, at least one layer of the unit is activated

in the window, and the display is neither frozen nor iconi�ed. Links are drawn if the

corresponding units are visible, have the same subnet number, and have a weight that

exceeds the threshold set by the trigger sliders in the setup panel.

Functions to compute grid coordinates from pixel coordinates and vice versa are located

in the �le ui utilProcs.c. Normalizing functions are also located here. Normalization

of edges of a rectangle here means exchanging the coordinates, if necessary, to place the

�rst edge to the left and above the second (ui normalize rect()). A normalization with

ui normalize coord() only puts the �rst coordinate left of the second.

All functions which call X graphic routines are kept in the �le ui xGraphic.c. Among

them is a function for drawing an arrow (ui xDrawArrow()), a function for drawing a box

(ui xDrawBox()),as well as a function to delete a black or white rectangle (ui xDelete-

Rect()). To generate an arrow head, a triangle is rotated appropriately (see also the

algorithm in [Har83]).

16.11 Selection Mechanism

All functions and global variables dealing with the selection mechanism have the pre-

�x ui sel . All selected units are held in a linear linked list starting at the pointer

ui sel listPtr. It is set to point to an element on initialization. The number of selected

16.12. INTERFACE TO THE SIMULATOR KERNEL 203

bit 0 selected, if set

bit 1 failure of last action on this unit; not used

bit 3 action UNITS MOVE: Unit was already moved

bit 4 action LINKS INVERSE: Links were already turned

Table 16.3: Meaning of the Bits in the ag item of each list element for the selection.

units is stored in the globale variable ui sel numberOfSelectedItems. The total number

of allocated items is kept in ui sel numberOfItems. This list is always increasing, i.e.

memory is not freed by dispose(), but all unused elements are kept in the list, marked

as such (Bit 0 in the component flags), and are used again when needed. New elements

are attached at the beginning of the list.

typedef struct SelectionType {

struct SelectionType *nextPtr;

struct PosType gridPos;

int subNetNo;

int unitNo;

int copyNo;

int flags;

};

For an unambiguous identi�cation of the units, their subnet number is stored in addition

to their grid position. This is necessary, since units in di�erent subnets may have the

same grid positions. On processing the action Units Copy Structure the unit number is

saved, in order to keep track of the units during the copying process. After completion of

the action, the component is superuous. Table 16.3 gives the meaning of the bits in the

component flags.

When several windows are used, units can be selected in multiple windows. The case of one

unit being displayed in more than one window has to be observed. SNNS-XGUI therefore

allows selection only of units belonging to an active layer, and at least one window with

the same subnet number must be open. If a unit is selected in one window, the selection

mark becomes visible in all displays.

When a unit is marked selected, a cross is drawn over the unit. It has to be assured that

prior to drawing or deleting, all marks are reset, and get updated afterwards with the

function ui sel reshowItems. All editor functions dealing with moving or deleting units

(pre�x "`ui action "'), have to assure consistency of the selection list. This can be done

by changing the ag, since these functions anyway have access to this element, when they

process the selected unit.

16.12 Interface to the Simulator Kernel

The simulator kernel of SNNS o�ers a set of interface functions (see also chapter 13)

which allow a one way communication with the graphic routines. There the graphical user

204 CHAPTER 16. IMPLEMENTATION OF THE USER INTERFACE

interface acts as the master, the kernel as the slave. The functions can be assigned to the

following tasks:

� read and set unit, site, and link attributes and functions

� administer f-types and sites

� change the network topology

� load and save networks and patterns

� simulator functions: update, teaching

The keys to all operations of the user interface (like adding or deleting units or links,

changing attributes etc.) are always the unit number and the unit position. Therefore

these two attributes always have to be unambiguous. On dealing directly with the unit

numbers great caution is needed, since the kernel compresses its data structures during a

save, thereby changing the unit numbers. The access via unit number, however, is much

faster than via position, because a sequential search can be avoided that way.

The search is necessary, however, when the user interface has to process an event (But-

tonPress, ButtonRelease, KeyPress, : : :) which has occured in a window. A possible

improvement would be an additional data structure which sorts all units by their grid

positions. A linear linked list could, for example, be assigned to each row of the grid. The

search time is then limited by the maximum number of units in a row. Unfortunately, for

small nets the longer time to build up the display might outweigh the faster access time.

In very large nets this mechanism could be a real improvement.

To increase the stability of the simulator, the current version always requests its data from

the kernel (and not from global variables) in all situations where consistency is important.

There are also data consistency checks contained in the code, before any change on the

net is performed. This does not decrease system performance, since these requests are

answered very fast by the kernel.

The type bool, used by all boolean functions of the kernel, is identical with the type Bool,

used by all SNNS-XGUI functions. The type Bool is used by X windows and therefore is

also used in the user interface.

typedef int Bool; * User Interface *\

typedef int bool; * Kernel *\

All functions in this interface have the pre�x "`krui "', to be able to identify the functions

in this module. They are a part of the kernel functions.

More detailed information about the interface between XGUI and the kernel can be found

in chapter 13 or in the source �les krui typ.h and glob typ.h of the kernel. Modules of

the user interface which use kernel functions must include the �le kr ui.h.

Chapter 17

3D-Display Implementation

This chapter gives a short overview of the implementation of the 3D visualization compo-

nent. The modules for 3D-viewing can be divided into four groups:

� Modules for the data structures

� Modules for the panels

� Modules for visualisation

� Modules for drawing

Each program �le has a corresponding header �le declaring the exported functions. Excep-

tions are the �les d3 global.c and d3 global.h, where the global variables are de�ned.

All modules carry the pre�x d3 for better distinction from the 2D XGUI functions (pre�x

ui) and the kernel functions (pre�x krui).

The functions that are visible from outside a module also carry the pre�x 3d of the 3D

user interface.

17.1 Contents of the Modules

The following �les contain data structures and variables of the 3D user interface:

d3 global.h Global data structures and constants

d3 global.c Global variables

d3 font5x7.c Array for the 5 � 7 character set

d3 font5x8.c Array for the 5 � 8 character set

d3 font8x14.c Array for the 8 � 14 character set

The following �les contain panels of the 3D user interface:

d3 pannels.c Control panel

d3 move.c Panel for stepwise rotation, scaling and translation

d3 zvalue.c Panel for input of the z-value

d3 setup.c Panel for the step sizes and initial values

205

206 CHAPTER 17. 3D-DISPLAY IMPLEMENTATION

d3 model.c Panel for the kind of display

d3 project.c Panel for the projection

d3 light.c Panel for the illumination

d3 units.c Panel for displaying values in the units

d3 links.c Panel for displaying values in the links

d3 disp.c Handling of the display window and the event loop

d3 xUtils.c X Window assistance routine

The following �les contain 3D visualization functions:

d3 main.c Interface and controls of the visualisation

d3 shade.c Illumination algorithm

d3 draw.c High level drawing routines for units and links

d3 anageo.c Matrix transformations and basic operations

d3 lists.c Administration of lists

The following �les contain low level drawing routines:

d3 graph.c Low level drawing routines and color control

d3 zgraph.c z-bu�er functions

d3 point.c Pixel oriented output

d3 fonts.c Control of text output

d3 dither.c dithering of the color values

17.2 Global Data Types and Variables

All global data types and constants are declared in the module d3 global.h. The basic

data types are

typedef float vector[4] the de�nition of a vector

typedef float matrix[4][4] the de�nition of a matrix

typedef vector cube[9] the corner points of a cube (unit),

as well as the center

The following data type is used for the z-bu�er algorithm of the unit surfaces:

typedef struct {

int n;

int mask;

vector vert[4];

} d3_polygon_type;

vert contains the vectors of the polygon edges

mask contains the interpolation mask for the x-, y- and z-coordinates

n used as a counter of polygon edges

17.2. GLOBAL DATA TYPES AND VARIABLES 207

The following data type is used for the values that can be represented by a unit:

typedef struct {

int size;

int color;

int top_label;

int bottom_label;

} d3_unit_mode_type;

size a value is displayed by the size of the unit

color a value is displayed by the color of the unit

top label a value is written to the upper right corner of the unit

bottom label a value is written to the lower right corner of the unit

The �elds may each contain one of the constants: activation on, init act on, out-

put on, bias on, name on, number on, zvalue on or nothing on.

The light source is described by the following declaration:

typedef struct {

int shade_mode;

vector position;

float Ia, Ka, Ip, Kd;

} d3_light_type;

shade mode speci�es, whether the units are to be illuminated

position is the position of the light source

Ia, Ka, Ip, Kd are the illumination constants

The whole status of the network display is contained in:

typedef struct {

vector trans_vec, rot_vec, scale_vec;

vector trans_step, rot_step, scale_step;

vector viewpoint;

float unit_aspect;

float link_scale;

float pos_link_trigger;

float neg_link_trigger;

int font;

int projection_mode;

int color_mode;

int link_mode;

d3_unit_mode_type unit_mode;

d3_light_type light;

} d3_state_type;

208 CHAPTER 17. 3D-DISPLAY IMPLEMENTATION

trans vec current translation

rot vec current rotation

scale vec current scaling

trans step step size for the translation in the transformation panel

rot step step size for the rotation in the transformation panel

scale step step size for the scaling in the transformation panel

viewpoint viewpoint for the central projection

unit aspect ratio between the edge length of the units and the distance

between them

link scale speci�es a factor for a region in which the links are to be

drawn

font speci�es the character set for labeling the units and links

projection mode contains the constant parallel or central

model mode speci�es the display mode for the network. The �eld con-

tains the constant wire frame or solid

color mode speci�es whether a monochrome or color terminal is used

link mode contains the display mode of the links. Values may be

links on, links off, links color or links label

unit mode see d3 unit mode type

light see d3 light type

The global variables are located in the module d3 global.c. Most of them are initialized

with default values.

The variables

Display *d3_display;

Window d3_window;

GC d3_gc;

int d3_screen;

address the display window of Xlib (the data types Display, Window and GC are declared

in Xlib).

int d3_displayXsize;

int d3_displayYsize;

contain the current size of the display window.

bool d3_displayIsReady;

bool d3_controlIsReady;

specify, whether the display window and the control panel are created.

bool d3_freeze;

speci�es, whether updates are possible in the display window.

int d3_fontXsize;

int d3_fontYsize;

17.3. DRAWING THE NETWORK IN 3D 209

specify the size of the current character set used to label the units and links.

int d3_numberWidth;

int d3_shortNumberWidth;

specify the width of oat and short int in the X Window dialogue widgets.

struct TransTable *d3_xyTransTable;

is a pointer to the 2D ! 3D translation table. The table itself is declared in the kernel.

int d3_transOffset;

speci�es the o�set for zero in the table. This is necessary, since C does not allow negative

indices.

d3_state_type d3_state;

contains the status of the network display (see d3 state type)

cube d3_e_cube;

contains the corner points of the standard cube. The cube is moved by the vector (-0.5,

-0.5, -0.5) to be centered in the coordinate system.

int d3_cube_lines[12][2];

contains the twelve edges of a cube. The numbers are used as indices to d3 e cube.

int d3_vertex_index[6][4];

contains the six planes of a cube. The numbers are also used as indices to d3 e cube

17.3 Drawing the Network in 3D

This section describes the functions that are called to draw the network. Most of the

routines are located in the module main.c. In other cases, the name of the module is

given in parentheses without the pre�x d3 . The functions are explained "top-down".

Figure 17.1 shows the hierarchy of the calls.

d3 drawNet:The routine is called by the function ui net updateWhole in the module

ui netUpdate.c as well as by all routines which make a redraw of the network neces-

sary.(e.g. upon changing from wire to solid model). When the display is frozen or not

opened, the routine is left immediately. In the case of solid representation, the z-bu�er is

cleared. Then the units are drawn by draw units. If links are to be displayed, draw links

calls the appropriate functions.

draw units: This function draws all units in a network. First, the maximal dimensions of

the net are calculated by get net extrema, then the center of rotation is computed from

there. Afterwards the matrices for the global translation, scaling, and rotation are deter-

mined. The corners for labeling are determined next by get label vert indices. Now

2
1
0

C
H
A
P
T
E
R
1
7
.
3
D
-
D
I
S
P
L
A
Y
I
M
P
L
E
M
E
N
T
A
T
I
O
N

drawNet

draw
Units

draw
Links

get_net_
extrema

get_label_
vert_
indices

get_input_
pos_
vector

get_
size_
vector

calc_trans
formed_
cube

insert_
center_
vector

draw_
solid_
cube

label
Unit

draw
Solid
Line

set
Link
Color

label
Link

get_
vert_
index

unit_
transform
ation

projec
tion

vertex_
index

normal
Vector

shade
Intens

get
Color
Value

set
color

draw
Poly

F
i
g
u
r
e
1
7
.
1
:
F
u
n
c
t
i
o
n
c
a
l
l
s
o
f
d
r
a
w
N
e
t

17.3. DRAWING THE NETWORK IN 3D 211

the net is traversed unit by unit. For each unit its location in space (in get unit pos -

vector) and the corresponding matrix is computed. If a value is to be displayed by the

size of the unit, the value is �rst changed to a vector in get size vector and then to a

matrix. The matrices are multiplied with each other by calc transformed cube. With

this new matrix, the vectors of the standard cube are transformed to picture space. The

center of the transformed unit is stored by insert center vector, to speed up the subse-

quent drawing of links. Depending upon the representation mode the unit is drawn with

d3 drawWireframeCube or d3 drawSolidCube in the module draw.c. If the units are to

be labeled, d3 labelUnit puts the value at the appropriate place.

get net extrema: This routine determines the extension of the network in x-, y-, and z-

direction. For each unit position it is checked whether one of its components is a maximum.

The results are two vectors enclosing the net.

get label vert indices: The indices to the unit vectors for labeling are computed in

this function. This can be done at a single unit, since all units are rotated by the same

angle and the alignment doesn't change. The routine calls the actual computing function

get vert index once for the upper and once for the lower label.

get unit pos vector: This function contains the 2D ! 3D transformation. Input pa-

rameter is the unit number, output value the 3D{vector. All functions which require

3D{coordinates have to call this routine.

The position of the unit is read by krui getUnitPosition. This value contains the x

and y coordinate in the 2D{display as well as the z-value assigned to the unit. The

displacement of the unit against the 2d{display in x and y direction is computed by the

2D! 3D translation table d3 xyTransTable. The z-coordinate is used to index the table.

get size vector: In this routine the activation, the initial activation, the output, or the

threshold is translated into a vector for the unit size. All components of the vector contain

the same value. Values bigger than 1 are clipped. This guarantees that the unit can not

grow arbitrarily and cover other units. For negative values and values around zero, a ag

is returned that keeps the unit from being drawn. This is necessary, since the unit would

otherwise be drawn as a point.

calc transformed cube: This subprogram has to calculate the transformed unit coor-

dinates. Therefore the following matrices have to be multiplied: matrix for 3D{position,

for centering the unit in space, for the base values of the unit, for the size of the unit rep-

resenting a value, for the scaling of the net, for a displacement of the net, and the matrix

for rotation of the net. The resulting matrix transforms the vectors of the standard cube

by unit transformation. Finally a central projection is performed by d3 projection if

that option was selected.

unit transformation: In this routine, the vectors of the standard cube are multiplied

by the transformation matrix.

insert center vector: The transformed center of the unit is written to the unit structure

of the kernel by krui setUnitCenters.

d3 drawWireframeCube: This function draws a \transparent" unit. The eight trans-

formed vectors of the unit corners are connected with each other according to the entries in

212 CHAPTER 17. 3D-DISPLAY IMPLEMENTATION

the d3 cube lines array. The drawing is performed by the low level routine d3 drawLine

(graph.c)

d3 drawSolidCube: This subprogram draws a \massive\ unit. The corner points of

the planes are de�ned by the array d3 vertex index in global.c. If no value is to be

displayed by the color of the unit, the brightness is computed for all six planes of the

cube. For this purpose, d3 normalVector (anageo.c) computes a vector perpendicular to

the plane. d3 shadeIntens in module shade.c takes the position of the light source, the

normal vector of the plane, and a vector on the plane and computes the intensity value for

the plane. This is converted to a palette index by d3 intens to grayval and activated

by d3 setColor (draw.c). If a value is to be displayed by the color, d3 getColorValue

determines the appropriate color value and d3 value to color the palette index. Then

d3 drawPoly (graph.c) draws the plane.

d3 shadeIntens: Here the intensity of the light source is computed. The value varies

between -1 and 1.

d3 getColorValue: This function returns a value in the range [�1; 1]. The value may

represent the activation, initial activation, output, or threshold of the unit.

d3 labelUnit: To label a unit, the appropriate value is converted to a string. Then, the

position for the string is computed. The function get label vert indices did already

compute the index of the corner. If the label is to be put at the upper corner, the

y-coordinate has to be adjusted by the font height. The string is drawn by a call to

d3 draw string in module fonts.c.

draw links: This function draws the links in a network. For each unit the numbers

of all units connected with the current one are obtained by krui getFirstPredUnit

and krui getNextPredUnit. Additionally the weight of the connection is stored. The

coordinates of the units to be connected are determined by krui getUnitCenters. A

link is either black, or gets a color assigned by d3 setLinkColor which corresponds

to its weight. The drawing is performed by the functions d3 drawWireframeLine or

d3 drawSolidLine in module draw.c. An optional labeling with the weight is performed

by a call to d3 labelLink.

d3 setLinkColor: The color of a link is determined by its weight. For this purpose

the weight is converted to the interval [�1; 1] with the scale factor d3 state.link scale.

Bigger weights get the value 1, smaller ones -1. The implementation is analogous to the

2D{display.

d3 drawWireframeLine: To draw a link in the wire frame model, the vector is rounded

and drawn by the function d3 drawLine (graph.c).

d3 drawSolidLine: The points of a link in solid model display are computed from the

line equation and drawn with d3 putPixel.

d3 labelLink: This routine writes the weight of a link at the center of the link. The

center between head and tail is given by the line equation with � = 0.5. The value is put

at this position with d3 draw string.

17.4. LOW LEVEL DRAWING ROUTINES 213

17.4 Low Level Drawing Routines

The low level drawing routines are located in the modules d3 graph.c, d3 fonts.c

d3 point.c, and d3 dither.c.

The following functions only call the corresponding Xlib routines. The justi�cation for

these additional routines is, that they simplify porting to other graphic systems, since

they are the lowest level of drawing calls.

function Xlib Call Task

d3 setColor XsetForegroand sets the foreground color

d3 clearDisplay XClearWindow deletes the display window

d3 drawLine XDrawLine draws a line

d3 putPixel XDrawPoint draws a pixel

The z-bu�er is controlled by the routines in module d3 zGraph.c. The z-bu�er is organized

as a one dimensional array of oat. Thereby, clearing the bu�er is very fast. The necessary

memory is dynamically allocated (and freed) by the operating system. The position (x; y)

is computed explicitly from the size of the bu�er.

d3 initZbuffer allocate the z-bu�er on the heap

d3 clearZbuffer reset the z-bu�er to the maximum distance

d3 readZbuffer get distance z at position (x; y)

d3 writeZbuffer set distance z at position (x; y)

d3 freeZbuffer free the z-bu�er on the heap

A polygon is drawn by the function d3 drawPoly. The corresponding Xlib call cannot be

used, since the visibility of each polygon point has to be checked. The implementation

is derived from the article "Generic Convex Polygon Scan Conversion and Clipping" by

Paul Heckbert.

Several routines for labeling the links and units had to be created. This was necessary

because the characters must be addressed point by point because of the z-bu�ering. The

routines are listed in the module d3 fonts.c.

d3 select font selects a font

d3 get font sizes returns the width and height of the current font

d3 draw string writes the string to the position (x; y; z)

The local functions draw char and draw zbuffered char are used by d3 draw string to

generate a pixel sequence from the ASCII code of a character and the font array.

The creation of grey values is performed with the function dither in module d3 dither.c.

17.5 Matrix Calculations

The module d3 anageo.c contains the routines for vector and matrix calculations.

214 CHAPTER 17. 3D-DISPLAY IMPLEMENTATION

e matrix creates an identity matrix

d3 transMatrix creates the translation matrix

d3 scaleMatrix creates the scaling matrix

d3 rotateXmatrix creates matrix for rotation around the x-axis

d3 rotateYmatrix creates matrix for rotation around the y-axis

d3 rotateZmatrix creates matrix for rotation around the z-axis

d3 rotateMatrix creates matrix for rotation around all axes

d3 multMatrix multiplies two matrices

d3 multMatrixVector multiplies a vector and a matrix

d3 normalVector calculates the normal vector for a plane

d3 projection performs a central projection

17.6 The 3D Display Window

The 3D display window is opened by the callback function d3 createDisplayWindow,

linked to the DISPLAY button in the control panel.

The display window has its own event handler. It reacts to Con�gureNotify and Expose

events. When an Expose event occurs, the net is redrawn. Since a series of Expose events

is created in some cases, all but the last one are ignored. If the size of the display window

is changed, a Con�gureNotify event causes the net to be centered in the new window and

redrawn. All Expose events are blocked in this case.

The display window is created by XtCreatePopupShell. It contains an inner frame (see

17.7). After the window becomes visible the Xlib variables d3 display, d3 window and

d3 screen are created as well as the graphic context d3 gc. Each subsequent reference to

the display window is performed by Xlib functions (see 17.4).

17.7 Panels

The panels were implemented with the Intrinsics { and Athena Toolkit for X11 Release

4. The structure of the panels is similar to those of the 2D{interface, to make the display

as homogeneous as possible. Therefore, the routines in module ui xWigets.c have been

used.

The module d3 xUtils.c contains the two functions d3 xCreateButtonItem and d3 x-

CreateToggleItem. They create the buttons and import the "xbm" bitmaps for labeling

the buttons.

Most of the panels are programmed in a similar fashion. Therefore, the implementation

of the panel for the projection is described as an example. The panel looks like this:

In module d3 panels.c �ve functions handle the project panel.

d3 createProjectpanel: This routine is a callback function of the button PROJECT

in the control panel. As a parameter, the button itself is passed. From there, XtTrans-

lateCoords computes the position at which the project panel is to be opened with Xt-

17.7. PANELS 215

Figure 17.2: Project panel

CreatePopupShell. Since the panel is supposed to have an inner frame, a window of

boxWidgetClass is created with XtCreateManagedWidget. There the actual window

of class formWidgetClass is located. Now the two radio buttons PARALLEL and

CENTRAL are created with d3 xCreateToggleItem. Then the labeling Viewpoint X

with ui xCreateLabelItem and the dialogue window follow. The next two lines are cre-

ated similarly. Then the DONE button is created with d3 xCreateButtonItem. In the

next step the three callbacks for the three buttons are created by XtAddCallback. set-

ParallelProjection and setCentralProjection are linked to the two radio buttons,

d3 closeProjectpanel to the DONE button. Now a temporary variable temp state of

type d3 state type for the status of the display is generated. All changes to the status

are stored there as long as the panel exists. Now one of the two radio buttons gets inverted

by setProjectToggleState, corresponding with the current status. At last, the panel is

made visible by XtPopup with XtGrabExclusive.

setParallelProjection: If the PARALLEL button is clicked, this function sets the �eld

temp state.projection mode to parallel. A call to setProjectToggleState updates

the panel.

setCentralProjection: like setParallelProjection

setProjectToggleState: With this function, the status of the two radio buttons is up-

dated. The variable temp state.projection mode is read, one of the buttons is set, the

other reset.

d3 closeProjectpanel: When the panel is closed, the values of the dialogue windows

have to be written to the variable temp state.viewpoint. Now temp state is compared

with the initial status variable d3 state. If they di�er, a parameter has changed and

the net has to be redrawn. This is done by copying temp state to d3 state and calling

d3 drawNet afterwards. The indirection with the temporary variable is necessary, since

the panel may have been opened by mistake or for control reasons. In this case the net

doesn't have to be redrawn.

Appendix A

Kernel File Interface

A.1 The ASCII Network File Format

The ASCII representation of a network consists of the following parts:

� a header, which contains information about the net

� the de�nition of the teaching function

� the de�nition of the sites

� the de�nition of cell types

� the de�nition of the default values for cells

� the enumeration of the cells with all their characteristics

� the list of connections

� a list of subnet numbers

� a list of layer numbers

All parts, except the header and the enumeration of the cells, may be omitted. Each part

may also be empty. It then consists only of the part title, the header line and the boarder

marks (e.g.: ----|---|------).

Entries in the site de�nition section do not contain any empty columns. The only empty

column in the type de�nition section may be the sites column, in which case the cells of

this type do not have sites.

Entries in the unit de�nition section have at least the columns no. (cell number) and po-

sition �lled. The entries (rows) are sorted by increasing cell number. If column typeName

is �lled, the columns act func, out func, and sites remain empty.

Entries in the connection de�nition section have all columns �lled. The respective cell does

not have a site, if the column site is empty. The entries are sorted by increasing number

of the target cell (column target). Each entry may have multiple entries in the column

sources . In this case, the entries (number of the source cell and the connection strength)

216

A.2. FORM OF THE NETWORK FILE ENTRIES 217

are separated by a comma and a blank, or by a comma and a newline (see example in the

Appendix B).

The �le may contain comment lines. Each line beginning with # is skipped by the SNNS-

kernel.

A.2 Form of the Network File Entries

Columns are separated by the string | . A row never exceeds 250 characters.

Strings may have arbitrary length. The compiler determines the length of each row con-

taining strings (maximum string length + 2). Within the columns, the strings are stored

left adjusted. Strings may not contain blanks, but all special characters except |. The

�rst character of a string has to be a letter.

Integers may have an arbitrary number of digits. Cell numbers are always positive and

not zero. Position coordinates may be positive or negative. The compiler determines the

length of each row containing integers (maximum digit number + 2). Within the columns,

the numbers are stored right adjusted.

Floats are always stored in �xed length with the format Vx.yyyyy, where V is the sign

(+, - or blank), x is 0 or 1 and y is the rational part (5 digits behind the decimal point).

Rows containing oats are therefore always 10 characters long (8 + 1 blank on each side).

If a row contains several sites in the type or unit de�nition section, they are written below

each other. They are separated in the following way: Directly after the �rst site follows

a comma and a newline (\n). The next line starts with an arbitrary number of blanks or

tabs in front of the next site.

The source of a connection is described by a pair, the cell number and the strength of the

connection. It always has the format nnn:Vx.yyyyy with the following meaning:

� nnn Number of the source

� Vx.yyyyy Strength of the connection as a oat value (format as described above)

The compiler determines the width of the column nnn by the highest cell number present.

The cell numbers are written into the column right adjusted (according to the rules for

integers). The column Vx.yyyyy has �xed width. Several source pairs in an entry to the

connection de�nition section are separated by a comma and a blank. If the list of source

pairs exceeds the length of one line, the line has to be parted after the following rule:

� Separation is always between pairs, never within them.

� The comma between pairs is always directly behind the last pair, i.e. remains in the

old line.

� After a newline (\n) an arbitrary number of blanks or tabs may precede the next

pair.

218 APPENDIX A. KERNEL FILE INTERFACE

A.3 Grammar of the Network Files

A.3.1 Conventions

A.3.1.1 Lexical Elements of the Grammar

The lexical elements of the grammar which de�nes network �les are listed as regular

expresions. The �rst column lists the name of the symbol, the second the regular expresion

de�ning it. The third column may contain comments.

� All terminals (characters) are put between ": : :".

� Elements of sets are put between square brackets. Within the brackets, the char-

acters represent themselves (even without "), and - de�nes a range of values. The

class of digits is de�ned, e.g. as ["0"-"9"].

� Characters can be combined into groups with parenteses ().

� x* means, that the character or group x can occur zero or more times.

� x+ means, that the character or group x must occur at least once, but may occur

several times.

� x? means, that x can be omitted.

� x{n} means, that x has to occur exactly n times.

� x|y means, that either x or y has to occur.

� *, + and {} bind strongest, ? is second, | binds weakest.

� Groups or classes of characters are treated like a single character with respect to

priority.

A.3.1.2 De�nition of the Grammar

The Grammar de�ning the interface is listed in a special form of EBNF.

� Parts between square brackets [] are facultative.

� | separates alternatives (like with terminal symbols).

� {x} means, that x may occur zero or more times.

� CSTRING is everything that is recognized as string by the C programming language.

A.3. GRAMMAR OF THE NETWORK FILES 219

A.3.2 Terminal Symbols:

WHITESPACE {" "|"\n"|"\t"} /* whitespaces */

BLANKS_TABS {" "|"\t"} /* only blanks or tabs */

W_COL_SEP (" "|"\n"|"\t") {" "|"\n"|"\t"} "|" {" "|"\n"|"\t"}

/* at least one blank and the column separation */

COL_SEP {" "|"\n"|"\t"} "|" {" "|"\n"|"\t"} /* column separation */

COMMA {" "|"\n"|"\t"} "," {" "|"\n"|"\t"} /* at least the comma */

EOL {" "|"\n"|"\t"} "\n" {" "|"\n"|"\t"} /* at least "\n" */

CUT {" "|"\n"|"\t"} (" "|"\n"|"\t") {" "|"\n"|"\t"}

/* at least a blank, "\t", or "\n" */

COLON ":"

/* separation lines for different tables */

TWO_COLUMN_LINE "-"+"|""-"+

THREE_COLUMN_LINE "-"+"|""-"+"|""-"+

FOUR_COLUMN_LINE "-"+"|""-"+"|""-"+"|""-"+

SIX_COLUMN_LINE "-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+

SEVEN_COLUMN_LINE "-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+

TEN_COLUMN_LINE "-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+"|""-"+

"|""-"+"|""-"+"|""-"+

COMMENT {{" "|"\n"|"\t"} "#" CSTRING "\n" {" "|"\n"|"\t"}}

VERSION "V1.4-3D" | "V2.1" | "V3.0" /* version of SNNS */

SNNS "SNNS network definition file" /* output file header */

/* nine different headers */

GENERATED_AT "generated at"

NETWORK_NAME "network name :"

SOURCE_FILES "source files"

NO.OF_UNITES "no. of unites :"

NO.OF_CONNECTIONS "no. of connections :"

NO.OF_UNIT_TYPES "no. of unit types :"

NO.OF_SITE_TYPES "no. of site types :"

LEARNING_FUNCTION "learning function :"

UPDATE_FUNCTION "update function :"

/* titles of the different sections */

UNIT_SECTION_TITLE "unit definition section"

DEFAULT_SECTION_TITLE "unit default section"

SITE_SECTION_TITLE "site definition section"

TYPE_SECTION_TITLE "type definition section"

CONNECTION_SECTION_TITLE "connection definition section"

LAYER_SECTION_TITLE "layer definition section"

SUBNET_SECTION_TITLE "subnet definition section"

TRANSLATION_SECTION_TITLE "3D translation section"

TIME_DELAY_SECTION_TITLE "time delay section"

220 APPENDIX A. KERNEL FILE INTERFACE

/* column-titles of the different tables */

NO "no."

TYPE_NAME "type name"

UNIT_NAME "unit name"

ACT "act"

BIAS "bias"

ST "st"

POSITION "position"

SUBNET "subnet"

LAYER "layer"

ACT_FUNC "act func"

OUT_FUNC "out func"

SITES "sites"

SITE_NAME "site name"

SITE_FUNCTION "site function"

NAME "name"

TARGET "target"

SITE "site"

SOURCE:WEIGHT "source:weight"

UNIT_NO "unitNo."

DELTA_X "delta x"

DELTA_Y "delta y"

Z "z"

LLN "LLN"

LUN "LUN"

TROFF "Troff"

SOFF "Soff"

CTYPE "Ctype"

INTEGER ["0"-"9"]+ /*integer */

SFLOAT ["+" | " " | "-"] ["1" | "0"] "." ["0"-"9"]{5} /*signed float */

STRING ("A"-"Z" | "a"-"z" | "|")+ /*string */

A.3.3 Grammar:

out_file ::= file_header sections

file_header ::= WHITESPACE COMMENT h_snns EOL COMMENT h_generated_at EOL

COMMENT h_network_name EOL COMMENT h_source_files EOL

COMMENT h_no.of_unites EOL COMMENT h_no.of_connections EOL

COMMENT h_no.of_unit_types EOL COMMENT h_no.of_site_types EOL

COMMENT h_learning_function EOL COMMENT h_update_function EOL

/* parts of the file-header */

h_snns ::= SNNS BLANKS_TABS VERSION

h_generated_at ::= GENERATED_AT BLANKS_TABS CSTRING

h_network_name ::= NETWORK_NAME BLANKS_TABS STRING

h_source_files ::= SOURCE_FILES [BLANKS_TABS COLON BLANKS_TABS CSTRING]

h_no.of_unites ::= NO.OF_UNITES BLANKS_TABS INTEGER

A.3. GRAMMAR OF THE NETWORK FILES 221

h_no.of_connections ::= NO.OF_CONNECTIONS BLANKS_TABS INTEGER

h_no.of_unit_types ::= NO.OF_UNIT_TYPES BLANKS_TABS INTEGER

h_no.of_site_types ::= NO.OF_SITE_TYPES BLANKS_TABS INTEGER

h_learning_function ::= LEARNING_FUNCTION BLANKS_TABS STRING

h_update_function ::= UPDATE_FUNCTION BLANKS_TABS STRING

sections ::= COMMENT unit_section [COMMENT default_section]

[COMMENT site_section] [COMMENT type_section]

[COMMENT subnet_section] [COMMENT conn_section]

[COMMENT layer_section] [COMMENT trans_section]

[COMMENT time_delay_section] COMMENT

/* unit default section */

default_section ::= DEFAULT_SECTION_TITLE CUT COMMENT WHITESPACE default_block

default_block ::= default_header SEVEN_COLUMN_LINE EOL

{COMMENT default_def} SEVEN_COLUMN_LINE EOL

default_header ::= ACT COL_SEP BIAS COL_SEP ST COL_SEP SUBNET COL_SEP

LAYER COL_SEP ACT_FUNC COL_SEP OUT_FUNC CUT

default_def ::= SFLOAT W_COL_SEP SFLOAT W_COL_SEP STRING W_COL_SEP

INTEGER W_COL_SEP INTEGER W_COL_SEP STRING W_COL_SEP

STRING CUT

/* site definition section */

site_section ::= SITE_SECTION_TITLE CUT COMMENT WHITESPACE site_block

site_block ::= site_header TWO_COLUMN_LINE EOL {COMMENT site_def}

TWO_COLUMN_LINE EOL

site_header ::= SITE_NAME SITE_FUNCTION CUT

site_def ::= STRING W_COL_SEP STRING CUT

/* type definition section */

type_section ::= TYPE_SECTION_TITLE CUT COMMENT WHITESPACE type_block

type_block ::= type_header FOUR_COLUMN_LINE EOL {COMMENT type_def}

FOUR_COLUMN_LINE EOL

type_header ::= NAME COL_SEP ACT_FUNC COL_SEP OUT_FUNC COL_SEP SITES CUT

type_def ::= STRING W_COL_SEP STRING W_COL_SEP STRING W_COL_SEP

[{STRING COMMA} STRING] CUT

/* subnet definition section */

subnet_section ::= SUBNET_SECTION_TITLE CUT COMMENT WHITESPACE subnet_block

subnet_block ::= subnet_header TWO_COLUMN_LINE EOL {COMMENT subnet_def}

TWO_COLUMN_LINE EOL

subnet_header ::= SUBNET COL_SEP UNIT_NO CUT

subnet_def ::= INTEGER W_COL_SEP {INTEGER COMMA} INTEGER CUT

/* unit definition section /*

unit_section ::= UNIT_SECTION_TITLE CUT COMMENT WHITESPACE unit_block

unit_block ::= unit_header TEN_COLUMN_LINE EOL {COMMENT unit_def}

222 APPENDIX A. KERNEL FILE INTERFACE

TEN_COLUMN_LINE EOL

unit_header ::= NO COL_SEP TYPE_NAME COL_SEP UNIT_NAME COL_SEP

ACT COL_SEP BIAS COL_SEP ST COL_SEP POSITION COL_SEP

ACT_FUNC COL_SEP OUT_FUNC COL_SEP SITES CUT

unit_def ::= INTEGER W_COL_SEP ((STRING W_COL_SEP) | COL_SEP)

((STRING W_COL_SEP) | COL_SEP) ((SFLOAT W_COL_SEP) | COL_SEP)

((SFLOAT W_COL_SEP) | COL_SEP) ((STRING W_COL_SEP) | COL_SEP)

INTEGER COMMENT INTEGER COMMENT INTEGER W_COL_SEP

((STRING W_COL_SEP) | COL_SEP) ((STRING W_COL_SEP) | COL_SEP)

[{STRING COMMA} STRING]

/* connection definition section */

connection_section ::= CONNECTION_SECTION_TITLE CUT

COMMENT WHITESPACE connection_block

connection_block ::= connection_header THREE_COLUMN_LINE EOL

{COMMENT connection_def} THREE_COLUMN_LINE EOL

connection_header ::= TARGET COL_SEP SITE COL_SEP SOURCE:WEIGHT CUT

connection_def ::= ((INTEGER W_COL_SEP) | COL_SEP) STRING W_COL_SEP

{INTEGER WHITESPACE COLON WHITESPACE SFLOAT COMMA}

INTEGER WHITESPACE COLON WHITESPACE SFLOAT CUT

/* layer definition section */

layer_section ::= LAYER_SECTION_TITLE CUT COMMENT WHITESPACE layer_block

layer_block ::= layer_header TWO_COLUMN_LINE EOL {COMMENT layer_def}

TWO_COLUMN_LINE EOL

layer_header ::= LAYER COL_SEP UNIT_NO CUT

layer_def ::= INTEGER W_COL_SEP {INTEGER COMMENT} INTEGER CUT

/* 3D translation section */

translation_section ::= TRANSLATION_SECTION_TITLE CUT

COMMENT WHITESPACE translation_block

translation_block ::= translation_header THREE_COLUMN_LINE EOL

{COMMENT translation_def} THREE_COLUMN_LINE EOL

translation_header ::= DELTA_X COL_SEP DELTA_Y COL_SEP Z CUT

translation_def ::= INTEGER W_COL_SEP INTEGER W_COL_SEP INTEGER

/* time delay section */

td_section ::= TIME_DELAY_SECTION_TITLE CUT COMMENT WHITESPACE td_block

td_block ::= td_header SIX_COLUMN_LINE EOL {COMMENT td_def}

SIX_COLUMN_LINE EOL

td_header ::= NO COL_SEP LLN COL_SEP LUN COL_SEP

TROFF COL_SEP SOFF COL_SEP CTYPE CUT

td_def ::= INTEGER W_COL_SEP INTEGER W_COL_SEP INTEGER W_COL_SEP

INTEGER W_COL_SEP INTEGER W_COL_SEP INTEGER W_COL_SEP

Appendix B

Example Network Files

The lines in the connection de�nition section have been truncated to 80 characters per

line for printing purposes.

B.0.4 Example 1:

SNNS network definition file V3.0

generated at Fri Aug 3 00:28:44 1992

network name : klass

source files :

no. of units : 71

no. of connections : 610

no. of unit types : 0

no. of site types : 0

learning function : Std_Backpropagation

update function : Topological_Order

unit default section :

act | bias | st | subnet | layer | act func | out func

---------|----------|----|--------|-------|--------------|-------------

0.00000 | 0.00000 | h | 0 | 1 | Act_Logistic | Out_Identity

---------|----------|----|--------|-------|--------------|-------------

unit definition section :

no. | typeName | unitName | act | bias | st | position | act func | out func | sites

----|----------|----------|----------|----------|----|----------|----------|----------|-------

1 | | u11 | 1.00000 | 0.00000 | i | 1, 1, 0 |||

2 | | u12 | 0.00000 | 0.00000 | i | 2, 1, 0 |||

3 | | u13 | 0.00000 | 0.00000 | i | 3, 1, 0 |||

4 | | u14 | 0.00000 | 0.00000 | i | 4, 1, 0 |||

5 | | u15 | 1.00000 | 0.00000 | i | 5, 1, 0 |||

6 | | u21 | 1.00000 | 0.00000 | i | 1, 2, 0 |||

7 | | u22 | 1.00000 | 0.00000 | i | 2, 2, 0 |||

8 | | u23 | 0.00000 | 0.00000 | i | 3, 2, 0 |||

9 | | u24 | 1.00000 | 0.00000 | i | 4, 2, 0 |||

10 | | u25 | 1.00000 | 0.00000 | i | 5, 2, 0 |||

11 | | u31 | 1.00000 | 0.00000 | i | 1, 3, 0 |||

223

224 APPENDIX B. EXAMPLE NETWORK FILES

12 | | u32 | 0.00000 | 0.00000 | i | 2, 3, 0 |||

13 | | u33 | 1.00000 | 0.00000 | i | 3, 3, 0 |||

14 | | u34 | 0.00000 | 0.00000 | i | 4, 3, 0 |||

15 | | u35 | 1.00000 | 0.00000 | i | 5, 3, 0 |||

16 | | u41 | 1.00000 | 0.00000 | i | 1, 4, 0 |||

17 | | u42 | 0.00000 | 0.00000 | i | 2, 4, 0 |||

18 | | u43 | 0.00000 | 0.00000 | i | 3, 4, 0 |||

19 | | u44 | 0.00000 | 0.00000 | i | 4, 4, 0 |||

20 | | u45 | 1.00000 | 0.00000 | i | 5, 4, 0 |||

21 | | u51 | 1.00000 | 0.00000 | i | 1, 5, 0 |||

22 | | u52 | 0.00000 | 0.00000 | i | 2, 5, 0 |||

23 | | u53 | 0.00000 | 0.00000 | i | 3, 5, 0 |||

24 | | u54 | 0.00000 | 0.00000 | i | 4, 5, 0 |||

25 | | u55 | 1.00000 | 0.00000 | i | 5, 5, 0 |||

26 | | u61 | 1.00000 | 0.00000 | i | 1, 6, 0 |||

27 | | u62 | 0.00000 | 0.00000 | i | 2, 6, 0 |||

28 | | u63 | 0.00000 | 0.00000 | i | 3, 6, 0 |||

29 | | u64 | 0.00000 | 0.00000 | i | 4, 6, 0 |||

30 | | u65 | 1.00000 | 0.00000 | i | 5, 6, 0 |||

31 | | u71 | 1.00000 | 0.00000 | i | 1, 7, 0 |||

32 | | u72 | 0.00000 | 0.00000 | i | 2, 7, 0 |||

33 | | u73 | 0.00000 | 0.00000 | i | 3, 7, 0 |||

34 | | u74 | 0.00000 | 0.00000 | i | 4, 7, 0 |||

35 | | u75 | 1.00000 | 0.00000 | i | 5, 7, 0 |||

36 | | h1 | 0.99999 | 0.77763 | h | 8, 0, 0 |||

37 | | h2 | 0.19389 | 2.17683 | h | 8, 1, 0 |||

38 | | h3 | 1.00000 | 0.63820 | h | 8, 2, 0 |||

39 | | h4 | 0.99997 | -1.39519 | h | 8, 3, 0 |||

40 | | h5 | 0.00076 | 0.88637 | h | 8, 4, 0 |||

41 | | h6 | 1.00000 | -0.23139 | h | 8, 5, 0 |||

42 | | h7 | 0.94903 | 0.18078 | h | 8, 6, 0 |||

43 | | h8 | 0.00000 | 1.37368 | h | 8, 7, 0 |||

44 | | h9 | 0.99991 | 0.82651 | h | 8, 8, 0 |||

45 | | h10 | 0.00000 | 1.76282 | h | 8, 9, 0 |||

46 | | A | 0.00972 | -1.66540 | o | 11, 1, 0 |||

47 | | B | 0.00072 | -0.29800 | o | 12, 1, 0 |||

48 | | C | 0.00007 | -2.24918 | o | 13, 1, 0 |||

49 | | D | 0.02159 | -5.85148 | o | 14, 1, 0 |||

50 | | E | 0.00225 | -2.33176 | o | 11, 2, 0 |||

51 | | F | 0.00052 | -1.34881 | o | 12, 2, 0 |||

52 | | G | 0.00082 | -1.92413 | o | 13, 2, 0 |||

53 | | H | 0.00766 | -1.82425 | o | 14, 2, 0 |||

54 | | I | 0.00038 | -1.83376 | o | 11, 3, 0 |||

55 | | J | 0.00001 | -0.87552 | o | 12, 3, 0 |||

56 | | K | 0.01608 | -2.20737 | o | 13, 3, 0 |||

57 | | L | 0.01430 | -1.28561 | o | 14, 3, 0 |||

58 | | M | 0.92158 | -1.86763 | o | 11, 4, 0 |||

59 | | N | 0.05265 | -3.52717 | o | 12, 4, 0 |||

60 | | O | 0.00024 | -1.82485 | o | 13, 4, 0 |||

61 | | P | 0.00031 | -0.20401 | o | 14, 4, 0 |||

62 | | Q | 0.00025 | -1.78383 | o | 11, 5, 0 |||

63 | | R | 0.00000 | -1.61928 | o | 12, 5, 0 |||

64 | | S | 0.00000 | -1.59970 | o | 13, 5, 0 |||

65 | | T | 0.00006 | -1.67939 | o | 14, 5, 0 |||

66 | | U | 0.01808 | -1.66126 | o | 11, 6, 0 |||

67 | | V | 0.00025 | -1.53883 | o | 12, 6, 0 |||

68 | | W | 0.01146 | -2.78012 | o | 13, 6, 0 |||

69 | | X | 0.00082 | -2.21905 | o | 14, 6, 0 |||

70 | | Y | 0.00007 | -2.31156 | o | 11, 7, 0 |||

71 | | Z | 0.00002 | -2.88812 | o | 12, 7, 0 |||

----|----------|----------|----------|----------|----|----------|----------|----------|-------

connection definition section :

225

target | site | source:weight

-------|------|--

36 | | 1: 0.95093, 6: 3.83328, 11: 1.54422, 16: 4.18840, 21: 4.59526

12: 2.30336, 17:-3.28721, 22:-0.43977, 27: 1.19506, 32:-0.84080

23:-4.97246, 28:-3.30117, 33: 3.26851, 4:-0.19479, 9: 1.33412

34:-1.02822, 5:-2.79300, 10:-1.97733, 15:-0.45209, 20:-0.61497

37 | | 1:-0.93678, 6: 0.68963, 11:-0.94478, 16:-1.06968, 21:-0.47616

12: 2.62854, 17: 5.05391, 22:-0.37275, 27: 0.12598, 32: 0.27619

23:-1.45917, 28:-1.97934, 33: 1.01118, 4: 4.39595, 9:-2.78858

34:-0.14939, 5: 1.80792, 10: 3.66679, 15: 2.53150, 20:-1.07000

38 | | 1: 2.44151, 6: 0.41693, 11: 2.12043, 16: 1.40761, 21: 1.83566

12:-0.55002, 17: 2.08524, 22: 0.63304, 27: 0.27301, 32:-2.49952

23: 3.14177, 28:-1.25889, 33:-6.35069, 4:-5.25082, 9: 0.01774

34:-3.66092, 5: 3.24401, 10: 1.88082, 15: 6.44985, 20: 3.24165

39 | | 1: 5.17748, 6:-4.45709, 11:-0.65733, 16:-2.26190, 21:-2.69957

12:-1.43420, 17: 0.33409, 22:-0.74423, 27:-1.38010, 32: 3.08174

23:-4.42961, 28:-1.09858, 33: 2.09879, 4:-1.30835, 9: 0.79940

34: 1.99276, 5: 2.61433, 10:-3.56919, 15: 1.00952, 20: 2.86899

40 | | 1: 3.03612, 6: 0.05247, 11:-3.20839, 16:-4.03382, 21:-3.55648

12: 0.23398, 17: 1.33895, 22: 6.03206, 27:-0.01723, 32: 0.09160

23:-1.07894, 28:-1.77930, 33: 1.59529, 4:-1.57236, 9: 0.74423

34:-0.13875, 5: 5.30719, 10: 2.13168, 15:-2.34832, 20:-5.00616

41 | | 1:-4.41380, 6:-1.48152, 11:-2.62748, 16:-1.00557, 21:-0.06430

12: 3.93844, 17:-4.01591, 22: 0.76102, 27:-0.36823, 32: 0.54661

23: 4.15954, 28: 2.96118, 33:-3.30219, 4:-0.24202, 9: 1.56077

34:-0.20287, 5:-1.46062, 10: 1.79490, 15: 1.96920, 20: 3.72459

42 | | 1: 1.97383, 6: 2.53253, 11: 2.04922, 16: 1.13969, 21: 1.81064

12: 0.32565, 17: 4.64358, 22: 1.02883, 27:-1.05720, 32:-0.71916

23:-1.00499, 28:-1.10925, 33:-3.18685, 4: 2.12575, 9: 0.36763

34:-0.18372, 5:-4.93490, 10: 0.26375, 15:-2.02860, 20:-5.43881

43 | | 1: 0.07183, 6:-2.69081, 11:-1.24533, 16:-2.01347, 21:-1.36689

12:-2.11356, 17: 1.24788, 22: 1.23107, 27: 0.27674, 32:-2.45891

23: 5.17387, 28: 1.68170, 33:-2.30420, 4: 2.17011, 9: 0.86340

34:-2.23131, 5:-0.11916, 10:-4.39609, 15:-2.92706, 20:-5.43783

44 | | 1:-1.27907, 6: 1.89325, 11:-0.60419, 16: 3.60368, 21: 4.24280

12:-2.77766, 17: 1.01698, 22:-1.97236, 27: 1.38773, 32:-2.55429

23: 1.95344, 28: 2.85157, 33:-0.55796, 4:-0.64082, 9: 1.92937

34:-2.71524, 5: 5.31087, 10:-2.08897, 15:-5.75332, 20: 2.43438

45 | | 1:-1.22455, 6: 0.92594, 11: 1.13199, 16:-1.65062, 21:-1.41481

12:-3.04575, 17:-3.21280, 22:-0.23726, 27: 2.11836, 32: 2.23237

23: 5.96261, 28: 2.00822, 33: 2.97409, 4: 3.90943, 9: 1.54990

34: 2.42877, 5:-3.58017, 10: 2.31309, 15:-4.01833, 20: 0.28834

46 | | 45:-3.97560, 44: 0.45729, 43:-1.16526, 42: 0.38939, 41: 2.80876

36:-4.04184

47 | | 45:-4.88750, 44:-3.33955, 43:-1.72110, 42: 0.94756, 41:-2.24993

36: 0.14327

48 | | 45: 1.02597, 44:-1.82773, 43:-1.04974, 42: 2.09881, 41:-0.53220

36: 2.75042

49 | | 45: 1.58579, 44:-3.38572, 43:-0.89166, 42: 2.86233, 41: 2.25429

36: 1.92163

50 | | 45:-2.95134, 44: 2.39376, 43:-2.95486, 42:-0.11771, 41:-2.41775

36:-0.73749

51 | | 45:-4.16732, 44: 2.19092, 43: 3.46879, 42: 0.44175, 41:-2.47295

36:-0.40437

52 | | 45: 1.78256, 44: 4.64443, 43:-2.50408, 42: 0.65889, 41:-2.52796

36:-1.73887

53 | | 45:-3.64449, 44: 2.60025, 43:-1.57915, 42:-0.18638, 41:-4.14214

36:-4.29717

54 | | 45:-0.45205, 44:-1.44890, 43: 5.23345, 42:-0.35289, 41: 2.43160

36:-1.99719

55 | | 45: 0.46855, 44:-2.84431, 43:-1.80938, 42:-4.49606, 41: 1.16736

36:-4.07946

56 | | 45:-1.27961, 44: 0.81393, 43: 2.66027, 42:-1.05007, 41: 0.47655

36: 0.72057

57 | | 45:-1.21679, 44:-3.13145, 43:-0.69538, 42: 0.05268, 41:-3.12564

36: 2.16523

226 APPENDIX B. EXAMPLE NETWORK FILES

58 | | 45:-3.44107, 44: 2.18362, 43:-1.60547, 42:-0.50213, 41: 2.47751

36: 1.05544

59 | | 45:-5.06022, 44:-5.08796, 43:-0.74552, 42:-0.67009, 41: 2.90942

36: 1.10170

60 | | 45:-0.03838, 44:-2.59148, 43:-0.98185, 42:-4.97460, 41: 1.03714

36: 4.49324

61 | | 45:-3.65178, 44:-2.61389, 43:-1.76429, 42: 1.01853, 41:-3.90286

36: 0.46651

62 | | 45: 1.17767, 44:-3.70962, 43:-1.11298, 42:-2.77810, 41: 2.22540

36:-0.65937

63 | | 45: 1.52270, 44:-2.42352, 43: 2.59287, 42: 0.19606, 41:-3.00602

36:-3.14334

64 | | 45: 3.00298, 44:-3.65709, 43:-1.65150, 42: 1.44547, 41:-3.98775

36:-4.02590

65 | | 45: 0.56820, 44: 2.37122, 43: 2.89143, 42:-4.22975, 41:-2.32045

36:-2.17370

66 | | 45:-4.13007, 44:-0.30654, 43:-0.63380, 42:-5.63405, 41:-1.78425

36: 1.46460

67 | | 45: 1.66534, 44: 1.99220, 43:-1.22676, 42:-4.09076, 41:-3.58451

36: 1.40745

68 | | 45: 0.60032, 44: 2.75100, 43:-1.17663, 42:-4.25699, 41: 1.60600

36:-4.23531

69 | | 45:-4.31415, 44:-3.41717, 43:-0.77030, 42:-1.36290, 41: 1.92319

36: 0.28689

70 | | 45: 0.54085, 44: 1.80036, 43:-2.19014, 42:-1.20720, 41: 1.54519

36:-2.79769

71 | | 45: 0.00018, 44:-4.11360, 43: 0.85345, 42: 1.19947, 41: 1.22067

36:-3.29634

-------|------|--

B.0.5 Example 2:

SNNS network definition file V3.0

generated at Fri Aug 3 00:25:42 1992

network name : xor

source files :

no. of units : 4

no. of connections : 5

no. of unit types : 2

no. of site types : 2

learning function : Quickprop

update function : Topological_Order

site definition section :

site name | site function

-----------|------------------

inhibit | Site_Pi

excite | Site_WeightedSum

-----------|------------------

type definition section :

name | act func | out func |sites

--------------|--------------|--------------|---------

outType | Act_Logistic | Out_Identity |

LongeroutType | Act_Logistic | Out_Identity |

227

--------------|--------------|--------------|---------

unit default section :

act | bias | st | subnet | layer | act func | out func

---------|----------|----|--------|-------|--------------|-------------

0.00000 | 0.00000 | h | 0 | 1 | Act_Logistic | Out_Identity

---------|----------|----|--------|-------|--------------|-------------

unit definition section :

no. | typeName | unitName | act | bias | st | position | act func

----|---------------|----------|----------|----------|----|----------|---------

1 | | in_1 | 1.00000 | 0.00000 | i | 3,5,0 |||

2 | | in_2 | 1.00000 | 0.00000 | i | 9,5,0 |||

3 | | hidden | 0.04728 | -3.08885 | h | 6,3,0 |||

4 | | result | 0.10377 | -2.54932 | o | 6,0,0 |||

----|---------------|----------|----------|----------|----|----------|---------

connection definition section :

target | site | source:weight

-------|---------|---

3 | | 1: 4.92521, 2:-4.83963

4 | | 1:-4.67122, 2: 4.53903, 3:11.11523

-------|---------|---

Appendix C

Example Snnsbat Protocol File

SNNS Kernel V3.0 Batchlearning Program

Configuration file: 'newbat.config'

Log file : 'test.log2'

Networkfile '/usr/local/bv/SNNS/SNNSv3.0/examples/letters.net' loaded.

Network name: klass

No. of units: 71

No. of sites: 0

No. of links: 610

Learning Function: Quickprop

2 Learning Parameters

Learning Parameter #1: 0.200000

Learning Parameter #2: 0.300000

Patternfile '/usr/local/bv/SNNS/SNNSv3.0/examples/letters.pat' loaded.

No. of patterns: 26

No. of cycles: 5

Max. network error to stop: 0.100000

Patterns are shuffled

Test pattern file : '/usr/local/bv/SNNS/SNNSv2.1/examples/letters.pat'

Initialization Function: Randomize_Weights

2 Initialization Parameters

Initialization Parameter #1: -1.000000

Initialization Parameter #2: 1.000000

Result File : 'letters.res'

Result File Start Pattern: 1

Result File End Pattern : 26

Result File Output Pattern included

**

SNNS Kernel V3.0 Batchlearning started at Tue Jul 28 17:04:55 1992

Network initialized with

Randomize_Weights -1.00 1.00

228

229

Cycle: 0

Learning function value(s): [1]: 96.6988

Cycle: 1

Learning function value(s): [1]: 19.7769

Cycle: 2

Learning function value(s): [1]: 12.6723

Cycle: 3

Learning function value(s): [1]: 12.6058

Cycle: 4

Learning function value(s): [1]: 12.5618

Test Pattern File '/usr/local/bv/SNNS/SNNSv2.1/examples/letters.pat' loaded.

No. of test patterns: 26

Result file saved.

Network saved to trained_letters.net.

SNNS Kernel V3.0 Batchlearning terminated at Tue Jul 28 17:04:56 1992

System: SunOS Node: monet Machine: sun4c

**

---- STATISTICS ----

No. of learned cycles: 5

No. of units updated : 9230

No. of sites updated : 0

No. of links updated : 79300

CPU Time used: 1.95 seconds

User time: 1 seconds

No. of connection updates per second (CUPS): 4.066667e+04

Bibliography

[CG87a] G. A. Carpenter and S. Grossberg. A Massively Parallel Architecture for

a Selforganizing Neural Pattern Recognition Machine. Computer Vision,

Graphics and Image Processing, 37:54{115, 1987.

[CG87b] G. A. Carpenter and S. Grossberg. Stable self-organization of pattern recog-

nition codes for analog input patterns. Applied Optics, 26:4919{4930, 1987.

[CG91] G. A. Carpenter and S. Grossberg. ARTMAP: Supervised Real-Time Learn-

ing and Classi�cation of Nonstationary Data by a Self-Organizing Neural

Network. Neural Networks, 4:543{564, 1991.

[DH73] R. Duda and P. Hart. Pattern Classi�cation and Scene Analysis. Wiley &

Sons, Inc, 1973.

[Elm89] J. Elman. Finding structure in time. Technical Report CRL Tech Report 8801,

University of California at San Diego, Center for Research in Language., 1989.

[Fah88] Scott E. Fahlman. Faster-learning variations on back-propagation: An em-

pirical study. In T. J. Sejnowski G. E. Hinton and D. S. Touretzky, editors,

1988 Connectionist Models Summer School, San Mateo, CA, 1988. Morgan

Kaufmann.

[Fah91] S. E. Fahlman. The recurrent cascade-correlation architecture. Technical

Report CMU-CS-91-100, School of Computer Science, Carnegie Mellon Uni-

versity, 1991.

[FL91] S. E. Fahlman and C. Lebiere. The cascade-correlation learning architecture.

Technical Report CMU-CS-90-100, School of Computer Science, Carnegie

Mellon University, August 1991.

[GLML89] N. Goddard, K.J. Lynne, T. Mintz, and L.Bukys. The Rochester Connection-

ist Simulator. Technical Report 233 (revised), Univ. of Rochester, NY, oct

1989.

[God87] N. Goddard. The Rochester Connectionist Simulator: User Manual. Univ. of

Rochester, NY, 1987.

[Har83] S. Harrington. Computer Graphics - A Programming Approach. McGraw-Hill,

1983.

230

BIBLIOGRAPHY 231

[Her92] K.-U. Herrmann. ART { Adaptive Resonance Theory { Architekturen, Imple-

mentierung und Anwendung. Diplomarbeit 929, IPVR, Universit�at Stuttgart,

1992.

[HF91] M. Hoefeld and S. E. Fahlman. Learning with limited numerical precision

using the cascade-correlation algorithm. Technical Report CMU-CS-91-130,

School of Computer Science, Carnegie Mellon University, 1991.

[Hil85] W.D. Hillis. The Connection Machine. MIT Press, 1985.

[HS86a] W.D. Hillis and G.L. Steele. Data parallel algorithms. ACM, 29(12):1170{

1183, 1986.

[HS86b] W.D. Hillis and G.L. Steele. Massively parallel computers: The Connection

Machine and NONVON. Science, 231(4741):975{978, 1986.

[H�ub92] R. H�ubner. 3d{Visualiserung der Topologie und der Aktivit�at neuronaler

Netze. Diplomarbeit 846, IPVR, Universit�at Stuttgart, 1992.

[KKLT92] T. Kohonen, J. Kangas, J. Laaksoonen, and K. Torkkola. Lvq pak learn-

ing vector quantization program package. Technical report, Laboratory of

Computer and Information Science Rakentajanaukio 2 C, 1991 - 1992.

[KL90] J. Kindermann and A. Linden. Inversion of neural networks by gradient

descent. Parallel Computing, 14:277{286, 1990.

[Kor89] T. Korb. Entwurf und Implementierung einer deklarativen Sprache zur

Beschreibung neuronaler Netze. Studienarbeit 789, IPVR, Universit�at

Stuttgart, 1989.

[Kub91] G. Kubiak. Vorhersage von B�orsenkursen mit neuronalen Netzen. Diplomar-

beit 822, IPVR, Universit�at Stuttgart, 1991.

[KZ89] T. Korb and A. Zell. A declarative neural network description language. In

Microprocessing and Microprogramming. North-Holland, August 1989.

[Mac90] N. Mache. Entwurf und Realisierung eines e�zienten Simulatorkerns f�ur neu-

ronale Netze. Studienarbeit 895, IPVR, Universit�at Stuttgart, 1990.

[Mam92] G. Mamier. Graphische Visualisierungs{Hilfsmittel f�ur einen Simulator neu-

ronaler Netze. Diplomarbeit 880, IPVR, Universit�at Stuttgart, 1992.

[MP69] M. Minsky and S. Papert. Perceptrons: An Introduction to Computational

Geometry. The MIT Press, Cambridge, Massachusetts, 1969.

[MR92] H.Braun M. Riedmiller. Rprop: A fast adaptive learning algorithm. In Proc.

of the Int. Symposium on Computer and Information Science VII, 1992.

[MR93] H.Braun M. Riedmiller. Rprop: A fast and robust backpropagation learning

strategy. In Proc. of the ACNN, 1993.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal repre-

sentations by error propagation. In D. E. Rumelhart and J. L. McClelland,

editors, Parallel Distributed Processing: Explorations in the microstructure of

232 BIBLIOGRAPHY

cognition; Vol. 1: Foundations, Cambridge, Massachusetts, 1986. The MIT

Press.

[RM86] D.E. Rumelhart and J.L. McClelland. Parallel Distributed Processing, vol-

ume 1. MIT Press, 1986.

[Sch91a] M. Schmalzl. Rotations- und translationsinvariante Erkennung von maschi-

nengeschrieben Zeichen mit neuronalen Netzen. Studienarbeit 1011, IPVR,

Universit�at Stuttgart, 1991.

[Sch91b] D. Schmidt. Anwendung neuronaler Netzwerkmodelle zur Erkennung und

Klassi�kation exogener und endogener Komponenten hirnelektrischer Poten-

tiale. Studienarbeit 1010, IPVR, Universit�at Stuttgart, 1991.

[Sie91] J. Sienel. Kompensation von St�orger�auschen in Spracherkennungssystemen

mittels neuronaler Netze. Studienarbeit 1037, IPVR, Universit�at Stuttgart,

1991.

[SK92] J. Sch"urmann and U. Kre"sel. Mustererkennung mit statistischen methoden.

Technical report, Daimler-Benz AG, Forschungszentrum Ulm, Institut f"ur

Informatik, 1992.

[Som89] T. Sommer. Entwurf und Realisierung einer graphischen Benutzerober�ache

f�ur einen Simulator konnektionistischer Netzwerke. Studienarbeit 746, IPVR,

Universit�at Stuttgart, 1989.

[SUN86] SUN. Sunview user reference manual. Technical report, SUN microsystems,

1986.

[Vei91] A. Veigel. Rotations{ und rotationsinvariante Erkennung handgeschriebener

Zeichen mit neuronalen Netzwerken. Diplomarbeit 811, IPVR, Universit�at

Stuttgart, 1991.

[Vog92] M. Vogt. Implementierung und Anwendung von 'Generalized Radial Basis

Functions' in einem Simulator neuronaler Netze. Diplomarbeit 875, IPVR,

Universit�at Stuttgart, 1992.

[Was89] Philip D. Wasserman. Neural Computing. Van Nostrand Reinhold, New York,

1989.

[WHH

+

89] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. Lang. Phoneme

Recognition Using Time Delay Neural Networks. IEEE Transactions on Ac-

coustics, Speech and Signal Processing, 37:328{339, 1989.

[You89] D.A. Young. X-Window-System - Programming and Applications with Xt.

Prentice Hall, 1989.

[Zim91] P. Zimmerer. Translations{ und rotationsinvariante Erkennung von Werk-

st�ucken mit neuronalen Netzwerken. Diplomarbeit 777, IPVR, Universit�at

Stuttgart, 1991.

[Zip90] D. Zipser. Subgrouping reduces compexity and speeds up learning in recur-

rent networks. In D.S. Touretzky, editor, Advances in Neural Information

BIBLIOGRAPHY 233

Processing systems II, pages 638{641, San Mateo, California, 1990. Morgan

Kaufmann.

[ZKSB89] A. Zell, T. Korb, T. Sommer, and R. Bayer. Netsim: Ein Simulator f�ur

neuronale Netze. In GWAI-89. Springer-Verlag (Informatik-Fachberichte),

1989.

[ZMS90] A. Zell, N. Mache, and T. Sommer. Applications of neural networks. In Proc.

Applications of Neural Networks Conf., SPIE, volume 1469, pages 535{544,

Orlando Florida, 1990. Aerospace Sensing Intl. Symposium.

[ZMSK91a] A. Zell, N. Mache, T. Sommer, and T. Korb. Design of the SNNS neural

network simulator. In

�

Ostreichische Arti�cial-Intelligence-Tagung, pages 93{

102, Wien, 1991. Informatik-Fachberichte 287, Springer Verlag.

[ZMSK91b] A. Zell, N. Mache, T. Sommer, and T. Korb. Recent Developments of the

SNNS Neural Network Simulator. In Proc. Applications of Neural Networks

Conf., SPIE, volume 1469, pages 708{719, Orlando Florida, 1991. Aerospace

Sensing Intl. Symposium.

[ZMSK91c] A. Zell, N. Mache, T. Sommer, and T. Korb. The SNNS Neural Network

Simulator. In GWAI-91, 15. Fachtagung f�ur k�unstliche Intelligenz, pages

254{263. Informatik-Fachberichte 285, Springer Verlag, 1991.

[ZZ91] P. Zimmerer and A. Zell. Translations{ und rotationsinvariante Erkennung

von Werkst�ucken mit neuronalen Netzwerken. In Informatik-Fachberichte

290, pages 51{58, M�unchen, 1991. DAGM Symposium.

Index

2D Display, 31

Unit Attribute, 31

3D Control Panel, 140

3D Display Window, 145

Freeze Button, 145

Light Panel, 142

Links Panel, 144

Model Panel, 142

Project Panel, 142

Reset Button, 145

Rotate Panel, 141

Scale Panel, 141

Setup Panel, 141

Trans Panel, 141

Unit Panel, 143

3D Display Implementation, 205

3D Display Window, 145

Implementation, 214

3D Drawing Routine, 213

3D Font Routine, 213

3D Global Data Type, 206

3D Global Variable, 208

3D Interface

Call, 134

Structure, 133

3D Matrix Calculation, 213

3D Network

Creation, 134

Drawing Function, 209

calc transformed cube, 211

d3 drawNet, 209

d3 drawSolidCube, 212

d3 drawSolidLine, 212

d3 drawWireframeCube, 211

d3 drawWireframeLine, 212

d3 getColorValue, 212

d3 labelLink, 212

d3 labelUnit, 212

d3 setLinkColor, 212

d3 shadeIntens, 212

draw links, 212

draw units, 209

get label vert indices, 211

get net extrema, 211

get size vector, 211

get unit pos vector, 211

insert center vector, 211

unit transformation, 211

Example, 136

Visualization, 132

z-Coordinate

Assignment, 136

Display, 136

z-Plane Movement, 136

3D Panel Implementation, 214

3D Project Panel Implementation

d3 closeProjectpanel, 215

d3 createProjectpanel, 214

setCentralProjection, 215

setParallelProjection, 215

setProjectToggleState, 215

3D viewing Module, 205

3D Drawing Routine, 206

3D User Interface, 205

3D Visualization Function, 206

3D z-bu�er Routine, 213

Activation Function, 14

General Formula, 16

Prede�ned

BAM, 184

BSB, 184

Elliott, 184

Identity, 184

IdentityPlusBias, 184

Logistic, 16, 184

Logistic notInhibit, 184

Logistic Tbl., 184

234

INDEX 235

MinOutPlusWeight, 184

Perceptron, 184

RBF Gaussian, 184

RBF MultiQuadratic, 184

RBF ThinPlateSpline, 184

Signum, 184

Signum0, 184

Step, 184

TanH., 184

User De�ned, 185

Adaptive Resonance Theory, 119

Algorithm

BBPTT, 95

BPTT, 95

Cascade Correlation, 97

QPTT, 95

RPROP, 89

ART, 119

topology, 128

ART1, 49, 119

initialization function, 120

learning function, 122

structure, 119

topology, 119, 129

update functions, 122

usage, 120

ART2, 49, 123

initialization function, 124

learning function, 125

structure, 123

topology, 123, 131

update functions, 126

usage, 123

ARTMAP, 49, 126

initialization function, 127

learning function, 127

structure, 126

topology, 126, 129, 130

update functions, 128

usage, 127

Backpercolation, 48, 90

Backpropagation, 21

General Formula, 47

Backpropagation Networks, 87

Backpropagation through time, 95

BackpropBatch, 46

BackpropMomentum, 47

BackpropThroughTime, 47

Backward Propagation, 21

Batch Job, 146

BatchBackpropThroughTime, 47

BBPTT, 95

Bias, 16

Bidirectional Link, 61

BigNet, 69

ART, 80

Create Net, 76

Example 1 : Receptive Fields in Two

Dimensions, 74

Example 2 : Links between 3 Planes

of Di�erent Dimensions, 75

Link Editor, 73

Plane Editor, 73

Time Delay, 77

Window, 69

BigNet td, 77

Window, 77

BPTT, 95

Callback Function, 191

Callback Routine, 192

Cascade Correlation, 97

Cluster, 69

Components (Figure), 1

Con�rmer, 26

Implementation, 201

Connection, 13, 18

Weight, 18

Connectionism, 13

Counterpropagation, 48, 91

CPS, 153

Create Net, 76

CUPS, 153

Default.cfg, 23, 37

Delta-Rule, 21

Display

2D Display, 31

Color, 33

Layer, 32

Link Information, 32

Link Parameter, 33

Unit Information, 32

236 INDEX

Inversion Display, 83

Refresh, 196

Unit Function Display, 34

Weight Display, 44

DLVQ, 92

Drawing Function, 202, 209, 213

Edit F-Types Panel, 51

Edit Sites Panel, 51

Editor

Actions Implementation, 198

Command, 60

Flags Safety, 61

Graphic Direction, 67

Graphics All, 66

Graphics Complete, 66

Graphics Grid, 67

Graphics Links, 66

Graphics Move, 67

Graphics Origin, 67

Graphics Units, 66

Links Copy All, 62

Links Copy Environment, 62

Links Copy Input, 62

Links Copy Output, 62

Links Delete Clique, 62

Links Delete from Source unit, 62

Links Delete to Target unit, 62

Links Make Clique, 61

Links Make Double, 61

Links Make from Source unit, 61

Links Make Inverse, 61

Links Make to Target unit, 61

Links Return, 66

Links Set, 61

Mode Links, 66

Mode Units, 66

Sites Add, 62

Sites Copy with All links, 63

Sites Copy with No links, 63

Sites Delete, 63

Units Copy All, 65

Units Copy Input, 65

Units Copy None, 65

Units Copy Output, 65

Units Copy Structure All, 65

Units Copy Structure Back bind-

ing, 65

Units Copy Structure Double bind-

ing, 65

Units Copy Structure Forward bind-

ing, 65

Units Copy Structure Input, 65

Units Copy Structure None, 65

Units Copy Structure Output, 65

Units Delete, 64

Units Freeze, 63

Units Insert Default, 64

Units Insert F-type, 64

Units Insert Target, 64

Units Move, 64

Units Return, 66

Units Set Bias, 63

Units Set Function Activation, 63

Units Set Function F-type, 64

Units Set Function Output, 63

Units Set Initial activation, 63

Units Set io-Type, 63

Units Set Name, 63

Units Set Output, 63

Units Unfreeze, 63

Command Reference

Graphics Command, 59

Link Command, 57

Mode Command, 59

Site Command, 57

Unit Command, 58

Command Sequence, 60

Dialogue Example, 67

Mode

Link Mode, 54

Normal Mode, 54

Unit Mode, 54

Operation, 53

Error Curve, 45

Error Message, 180

Error of the Network, 42

Event Handler, 196

Event Handler for Keyboard Events, 198

Event Handler for Mouse and Window

Events, 197

Event Type, 196

Event-Dispatch-Loop, 191

INDEX 237

Example

3D Network, 136

BigNet

Example 1 : Receptive Fields in

Two Dimensions, 74

Example 2 : Links between 3 Planes

of Di�erent Dimensions, 75

Editor Dialogue, 67

Inversion, 85

Network File, 223

Radial Basis Functions, 117

Simple Network, 22

snnsbat, 151

Protocol File, 228

F-Type, 17, 51

File Browser Panel, 35

Implementation, 201

File Extension, 23

File Panel Procedure load, 201

Forward Propagation, 21

Freezing Displays, 200

Function Table (Figure), 162

Graph Window, 45

Graphic

Context, 196

Editor Command, 59

Module, 202

Normalizing Function, 202

Window Implementation, 196

Graphical Network Editor, 53

Graphical Output, 196

Grid

Coordinates Computation, 202

Origin, 34

Width, 34

GUI-Button, 27

Hardware, 8

Table, 1

Hebb-Rule, 20

Help

Text, 26

Window, 38

Implementation, 201

Help.hdoc, 23

Modi�cation, 38

Hidden Unit, 14

Hinton Diagram, 44

Info Panel, 28

Implementation, 195

Input Unit, 14

Installation, 8

Interface Function, 203

Internal Data Structure, 155

Figure, 157

Link, 157

Site, 157

Unit Array, 155

Inversion

Algorithm, 82

Display, 83

Error, 84

Example, 85

Variable, 84

Kernel Function, 163

Activation Propagation Function, 175

ART Interface Function, 180

Error Code Translation, 180

File I/O Function, 178

Function Table Read Function, 174

Interface Function, 178

Learning Function, 176

Link Function, 171

Memory Management Function, 179

Network Initialization Function, 175

Pattern Manipulation Function, 177

PrototypeManipulation Function, 172

Site Function

Site De�nition Function, 169

Site Manipulation Function, 170

Symbol Table Search Function, 178

Unit De�nition Function, 167

Unit Enquiry and Manipulation Func-

tion, 165

Unit Function, 163

Update Function, 176

Layer Model of the Simulator Kernel, 154

Learning, 20

Batch Learning, 21

Function, 42

Function Parameter

238 INDEX

ART1, 49

ART2, 49

ARTMAP, 49

Backpercolation, 48

BackpropBatch, 46

BackpropMomentum, 47

BackpropThroughTime, 47

BatchBackpropThroughTime, 47

CC, 50

Counterpropagation, 48

Quickprop, 47

QuickpropThroughTime, 48

RadialBasisLearning, 49

RCC, 50

Std Backpropagation, 46

TimeDelayBackprop, 46

O�ine Learning, 21

Online Learning, 21

RPROP, 50

Supervised Learning, 20

Least Mean Square Error, 82

Licensing and Copyright, 6

Link, 13, 18

Array, 159

Data Structure (Figure), 159

Data Structure, 157

Editor Command, 57

List (Figure), 157

Weight Default Value, 76

List Module, 200

Load

Con�guration File, 37

File, 36

Network File, 36

Pattern File, 36

Log File, 37

Main Loop Interuption, 201

Manager Panel, 27

GUI-Button, 27

Implementation, 195

Manager Message, 27

Status Line, 28

Mouse, 55

Net Input, 16

Network

Example, 22

Memory Management

Function Table, 162

Link Array, 159

Site Array, 159

Symbol Table, 159

Unit Flag, 159

Setup Panel, 40

Network File

Entries Format, 217

Example, 223

Format, 216

Grammar

De�nition, 218

Grammar, 220

Lexical Element, 218

Terminal Symbol, 219

Network Model of the Simulator Kernel,

152

Neural Net, 13

Obtainment, 7

O�ine Learning, 21

Online Learning, 21

Operating System, 8

Table, 1

Output Function, 14

Clip 0 1, 185

Clip 1 1, 185

General Formula, 17

Threshold 0.5, 185

Output Unit, 14

Panel

3D Control Panel, 140

Construction, 200

Edit F-Types, 51

Edit Sites, 51

File Browser Panel, 35

Info Panel, 28

Manager Panel, 27

Network Setup Panel, 40

Print Panel, 39

Remote Panel, 40

Setup Panel, 32

Performance Data, 153

Plane, 69, 78

INDEX 239

Number, 73

Print Panel, 39

Propagation

Backward Propagation, 21

Forward Propagation, 21

Rate, 153

Prototypes, 51

QPTT, 95

Quickprop, 47, 88

QuickpropThroughTime, 48

Radial Basis Functions, 107

Activation Function, 108

Activation Function for Hidden Units

Act RBF Gaussian, 110

Act RBF MultiQuadratic, 110

Act RBF ThinPlateSpline, 110

Activation Function for Output Units

Act IdentityPlusBias, 110

Act Logistic, 110

Example, 117

Initialization Function

RBF Weights Kohonen, 114

RBF Weights Kohonen Parameter,

114

RBF Weights Redo, 115

RBF Weights Redo Parameter, 115

RBF Weights, 111

RBF Weights Parameter, 111

Learning

Batch Mode, 116

Online Mode, 117

Learning Function, 115

RadialBasisLearning, 115

RadialBasisLearning Parameter, 116

RadialBasisLearning, 49

Recurrent Cascade Correlation, 97

Remote Panel, 40

Learning Function, 42

Parameter, 46

Options, 42

RPROP, 50, 89

Safety-Flag, 61

Save

Con�guration File, 37

File, 36

Network File, 36

Pattern File, 36

Result File, 37

Selection Mechanism, 202

Selection of Links, 55

Selection of Units, 54

Setup Panel, 32

Implementation, 199

Layer Panel Implementation, 196

Setup Variable, 199

Simulator Kernel

File

Example Network, 189

Header File, 187

Sourcecode File, 188

Test-, Demo-, and Benchmark-Program,

188

Implementation, 187

Site, 14, 19, 51

Array, 157

Data Structure (Figure), 159

Data Structure, 157

Editor Command, 57

Function

Linear, 183

Max, 183

Min, 183

PI, 183

Produkt, 183

List (Figure), 157

Table, 157

snnsbat, 146

Con�guration File, 146

Example, 151

Log File, 150

Protocol File Example, 228

Source Unit, 18, 28

Start Option, 24

Std Backpropagation, 46

Subnet Number, 34

Symbol Table (Figure), 159

Target Unit, 18, 28

Time Delay Networks, 103

TimeDelayBackprop, 46

Transfer Function

Prede�ned, 183

240 INDEX

User De�ned, 185

Unit, 13, 14

Activation Update Mode, 19

Array, 155

Attribute, 15

Editor Command, 58

Flag, 159

Function Display, 34

Scale, 34

Source Unit, 18

Target Unit, 18

Unselection of Units, 54

Update Mode, 19

Use of the Mouse, 55

User Interface Implementation, 190

Value Range, 29

Weight

Display, 44

Update Rate, 153

Widget, 192

Window

3D Display Window, 145

Administration, 192

BigNet Window, 69

BigNet td Window, 77

Graph Window, 45

Help Window, 38

Popup Window, 192

Top Level Shell Window, 192

Transient Shell Window, 192

Windows of XGUI, 24

WV Diagram, 44

XGUI, 23

Implementation, 190

Main Program, 195

Source File (Table), 192

Window, 24

